Cover Image

Synthesis and Characterization of SCDs/TiO2 Composite

Anthoni Batahan Aritonang, Ajuk Sapar, Heni Puspita Sari, Puji Ardiningsih, Adhitiyawarman Adhitiyawarman


Synthesis of sulphur-doped carbon nanodots immobilized on the TiO2 surface (SCDs/TiO2) composite was carried out using the sol-gel method with SCDs and titanium tetraisopropoxide (TTIP) as precursors. SCDs were prepared from citric acid monohydrate, urea, and sodium disulphite using the microwave technique. SCDs/TiO2 was then visually observed under UV 365 nm and characterized by UV-Vis diffuse reflectance spectrophotometry (UV-Vis/DRS), Photoluminescence (PL) spectroscopy, Fourier transform infrared (FT-IR), and X-ray diffraction (XRD). The SCDs/TiO2 composite product had a brown solid with a green luminescent under UV light. Furthermore, UV-Vis/DRS for variations in SCDs concentrations of 0.5%; 1.25%, and 2.5% showed Eg values of 2.33 eV, 2.14 eV, and 1.61 eV, respectively. The results showed that SCDs caused the maximum emission peak (λEm) to redshift and also affected the intensity of PL TiO2. There was also a shift in the absorption peak towards the visible light region. Based on the results, the 0.5% SCDs/TiO2 was the optimum concentration with the lowest intensity as an indication of separation of the (e-) and (h+) charge pairs, which greatly enhanced the photocatalytic efficiency.


microwave; photoluminescence; SCDs; sol-gel; TiO2

Full Text:



Aritonang, A. B., Krisnandi, Y. K., & Gunlazuardi, J. (2018). Modification of TiO2 nanotube arrays with N doping and Ag decorating for enhanced visible light photoelectrocatalytic degradation of methylene blue. International Journal on Advanced Science, Engineering and Information Technology, 8(1), 234–241. DOI: 10.18517/ijaseit.8.1.2342

Aritonang, A. B., Pratiwi, E., Warsidah, W., Nurdiansyah, S. I., & Risko, R. (2021). Fe-doped TiO2/Kaolinite as an antibacterial photocatalyst under visible light irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 293–301. DOI: 10.9767/bcrec.16.2.10325.293-301

Dambournet, D., Belharouak, I., Ma, J., & Amine, K. (2011). Template-assisted synthesis of high packing density SrLi2Ti 6O14 for use as anode in 2.7-V lithium-ion battery. Journal of Power Sources, 196(5), 2871–2874. DOI: 10.1016/j.jpowsour.2010.11.011

Dastan, D., & Chaure, N. B. (2014). Influence of Surfactants on TiO2 Nanoparticles Grown by Sol-Gel Technique. International Journal of Materials, Mechanics and Manufacturing, 2(1), 21–24. DOI: 10.7763/ijmmm.2014.v2.91

Hou, J., Li, H., Wang, L., Zhang, P., Zhou, T., Ding, H., & Ding, L. (2016). Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta, 146, 34–40. DOI: 10.1016/j.talanta.2015.08.024

Huang, K., Chen, L., Deng, J., & Xiong, J. (2012). Enhanced visible-light photocatalytic performance of nanosized anatase TiO 2 doped with CdS quantum dots for cancer-cell treatment. Journal of Nanomaterials, 2012. DOI: 10.1155/2012/720491

Karim, S., Pardoyo, P., & Subagio, A. (2016). Sintesis dan Karakterisasi TiO2 Terdoping Nitrogen (N-Doped TiO2) dengan Metode Sol–Gel. Jurnal Kimia Sains dan Aplikasi, 19(2), 63–67. DOI: 10.14710/jksa.19.2.63-67

Kudhier, M. A., Alkareem, R. A. S. A., & Sabry, R. S. (2021). Enhanced photocatalytic activity of TiO2-CdS composite nanofibers under sunlight irradiation. Journal of the Mechanical Behavior of Materials, 30(1), 213–219. DOI: 10.1515/jmbm-2021-0022

Kumar, M. S., Yasoda, K. Y., Kumaresan, D., Kothurkar, N. K., & Batabyal, S. K. (2018). TiO2-carbon quantum dots (CQD) nanohybrid: Enhanced photocatalytic activity. Materials Research Express, 5(7). DOI: 10.1088/2053-1591/aacbb9

Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., … Lee, S. T. (2010). Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie - International Edition, 49(26), 4430–4434. DOI: 10.1002/anie.200906154

Li, H., Liu, J., Qian, J., Li, Q., & Yang, J. (2014). Preparation of Bi-doped TiO2 nanoparticles and their visible light photocatalytic performance. Cuihua Xuebao/Chinese Journal of Catalysis, 35(9), 1578–1589. DOI: 10.1016/S1872-2067(14)60124-8

Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735–758. DOI: 10.1021/cr00035a013

Loukanov, A., Mladenova, P., Udono, H., Miskolczy, Z., Angelov, A., Biczók, L., & Nakabayashi, S. (2018). Sulfur doped fluorescent carbon dots as nanosensors for rapid and sensitive monitoring of calcium in hard water. Journal of Chemical Technology and Metallurgy, 53(3), 473–479.

Luo, H., Dimitrov, S., Daboczi, M., Kim, J. S., Guo, Q., Fang, Y., … Titirici, M. M. (2020). Nitrogen-Doped Carbon Dots/TiO2 Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 3(4), 3371–3381. DOI: 10.1021/acsanm.9b02412

Martins, N. C. T., Ângelo, J., Girão, A. V., Trindade, T., Andrade, L., & Mendes, A. (2016). N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Applied Catalysis B: Environmental, 193, 67–74. DOI: 10.1016/j.apcatb.2016.04.016

Ning, K., Sun, Y., Liu, J., Fu, Y., Ye, K., Liang, J., & Wu, Y. (2022). Research Update of Emergent Sulfur Quantum Dots in Synthesis and Sensing/Bioimaging Applications. Moleculs, 27(9), 2822. DOI: 10.3390/molecules27092822

Patil, S. M., Deshmukh, S. P., Dhodamani, A. G., More, K. V., & Delekar, S. D. (2016). Different Strategies for Modification of Titanium Dioxide as Heterogeneous Cata lyst in Chemical Transformations. Current Organic Chemistry, 21(9), 821–833. DOI: 10.2174/1385272820666161013151816

Pratiwi, E., Harlia, H., & Aritonang, A. B. (2020). Sintesis TiO2 terdoping Fe3+ untuk Degradasi Rhodamin B Secara Fotokatalisis dengan Bantuan Sinar Tampak. Positron, 10(1), 57. DOI: 10.26418/positron.v10i1.37739

Qin, Y., Wen, J., Zheng, L., Yan, H., Jiao, L., Wang, X., … Zhu, C. (2021). Single-atom-based heterojunction coupling with ion-exchange reaction for sensitive photoelectrochemical immunoassay. Nano Letters, 21(4), 1879–1887. DOI: 10.1021/acs.nanolett.1c00076

Ruan, H., & Zhou, L. (2022). Synthesis of Fluorescent Sulfur Quantum Dots for Bioimaging and Biosensing. Frontiers in Bioengineering and Biotechnology, 10(May), 1–7. DOI: 10.3389/fbioe.2022.909727

Syafei, D., Sugiarti, S., Darmawan, N., & Khotib, M. (2017). Synthesis of TiO2/carbon nanoparticle (C-dot) composites as active catalysts for photodegradation of persistent organic pollutant. Indonesian Journal of Chemistry, 17(1), 37–42. DOI: 10.22146/ijc.23615

Tussa’adah, R., & Astuti. (2015). Sintesis material fotokatalis tio 2 untuk penjernihan limbah tekstil. Jurnal Fisika Unand, 4(1), 91–96.

Wang, L., Zhu, S. J., Wang, H. Y., Qu, S. N., Zhang, Y. L., Zhang, J. H., … Sun, H. B. (2014). Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano, 8(3), 2541–2547. DOI: 10.1021/nn500368m

Yao, Y., Li, G., Ciston, S., & Lueptow, R. M. (2008). Photoreactive TiO2Carbon Nanotube.pdf, 42(13), 4952–4957.

Article Metrics

Abstract has been read : 207 times
DOWNLOAD PDF file viewed/downloaded: 0 times



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by:



                                                                                     Creative Commons License

Chemical Engineering Research Articles by is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright of CHEESA: Chemical Engineering Research Articles, ISSN 2614-8757 (Print)2615-2347 (Online)
Published by Universitas PGRI Madiun
Web Analytics View Statistic