Pinch-Exergy Approach to Enhance Sulphitation Process Efficiency in Sugar Manufacturing
Abstract
This study aimed to enhance the thermal efficiency of the sulphitation process in the boiling house of sugar plants using a combined approach of pinch and exergy analyses. Pinch analysis is a reliable method for optimizing the design of energy recovery systems. However, the primary limitations arise from its exclusive focus on heat transfer processes. On the other hand, exergy balance provides valuable insight into the consumption of supplied exergy by individual process units, serving as a quantitative measure of inefficiency. The boiling house was evaluated and modified using pinch-exergy analysis with Sulphitation Process capacity production of 8000 TCD. The results showed a potential reduction in exergy destruction by approximately 10.25 MW. The optimization effort led to reductions of 18.18 and 14.70% in the use of hot and cold external utility, respectively.
Keywords
Full Text:
DOWNLOAD PDFReferences
Higa, M., Freitas, A. J., Bannwart, A. C., & Zemp, R. J. (2009). Thermal integration of multiple effect evaporator in a sugar plant. Applied Thermal Engineering, 29(2–3), 515–522. doi: 10.1016/j.applthermaleng.2008.03.009
Sa, D. (2023). Economic Analysis of Separation Unit of Methanol to Propylene Production Based on Optimization of Refrigeration Cycles Using Pinch and Exergy Analysis. International Journal of Refrigeration, 146, 108–117. doi: 10.1016/j.ijrefrig.2022.09.029
Truls Gundersen, David Olsson Berstad, & Audun Aspelund. (2009). Extending pinch analysis and process integration into pressure and fluid phase considerations. Chemical Engineering Transactions, 18, 33–38. doi: 10.3303/CET0918003
Ramanath, T., Foo, D. C. Y., Tan, R. R., & Tan, J. (2023). Integrated enterprise input-output and carbon emission pinch analysis for carbon intensity reduction in edible oil refinery. Chemical Engineering Research and Design, 193, 826–842. doi: 10.1016/j.cherd.2023.03.045
Kemp, I. C. (2007). Pinch analysis and process integration: a user guide on process integration for the efficient use of energy (2nd ed.). Amsterdam ; Boston: Butterworth-Heinemann.
Westphalen, D. L., & Wolf Maciel, M. R. (2000). Optimization of bleed streams in evaporation systems based on pinch analysis: new approach. Computer Aided Chemical Engineering, 8, 997–1002. Elsevier. doi: 10.1016/S1570-7946(00)80168-6
Singh, I., Riley, R., & Seillier, D. (1997). Using pinch technology to optimise evaporator and vapour bleed configuration at the malelane mill. Proc S Afr Sug Technol Ass, 71(207–216).
Riadi, I., & Puji Utomo, D. (2022). The Effect of Operating Condition on Low Pressure Steam (LPS) in Sugar Factory by Pinch Analysis. UNISTEK, 9(1), 68–82. doi: 10.33592/unistek.v9i1.1786
Gaggioli, R. (1998). Available Energy and Exergy. Int.J. Applied Thermodynamics, 1(1–4), 1–8.
Wan, T., Bai, B., & Zhou, W. (2023). Exergy destruction analysis of a power generation system utilizing the cold energy of LNG. Heliyon, e19393. doi: 10.1016/j.heliyon.2023.e19393
Kotas, T. (1995). The Exergy Method of Thermal Plant Analysis. Krieger Publishing Company.
Ghorbani, B., Salehi, G. R., Ghaemmaleki, H., Amidpour, M., & Hamedi, M. H. (2012). Simulation and optimization of refrigeration cycle in NGL recovery plants with exergy-pinch analysis. Journal of Natural Gas Science and Engineering, 7, 35–43. doi: 10.1016/j.jngse.2012.03.003
Pacheco-Cedeño, J. S., Rodríguez-Muñoz, J. L., Ramírez-Minguela, J. J., & Pérez-García, V. (2023). Comparison of an absorption-compression hybrid refrigeration system and the conventional absorption refrigeration system: Exergy analysis. International Journal of Refrigeration, S0140700723002177. doi: 10.1016/j.ijrefrig.2023.08.003
Cerci, Y. (2002). The minimum work requirement for distillation processes. Exergy, An International Journal, 2(1), 15–23. doi: 10.1016/S1164-0235(01)00036-X
Kumar Dhakar, M., Choudhary, P., & Singh, N. K. (2021). Performance improvement of a sugar mill through EXERGY analysis. Materials Today: Proceedings, 46, 11202–11207. doi: 10.1016/j.matpr.2021.02.427
Peres, A. M., & Macedo, E. A. (1996). Thermodynamic properties of sugars in aqueous solutions: correlation and prediction using a modified UNIQUAC model. Fluid Phase Equilibria, 123, 71–95.
Kylan, G., Annegret, S., & Maciet, S. (2019). Development and verification of an aspen plus® model of a sugarcane biorefinery. Proc S Afr Sug Technol Ass, 92, 254–273.
Mafi, M., Naeynian, S. M. M., & Amidpour, M. (2009). Exergy analysis of multistage cascade low temperature refrigeration systems used in olefin plants. International Journal of Refrigeration, 32(2), 279–294. doi: 10.1016/j.ijrefrig.2008.05.008.
Smith, J. M., Van Ness, H. C., Abbot, M. M., & Swihart, M. T. (2018). Introduction to Chemical Engineering Thermodynamics (8th ed.). New York: McGraw-Hill Education.
Pambudi, N., Laurensia, R., Wijayanto, D., Perdana, V., Saw, L., & Handogo, R. (2017). Exergy Analysis of Boiler Process Powered by Biogas Fuel in Ethanol Production Plant: A Preliminary Analysis. Energy Procedia, 142, 216–223. doi: 10.1016/j.egypro.2017.12.035
Lambert, C., Laulan, B., Decloux, M., Romdhana, H., & Courtois, F. (2018). Simulation of a sugar beet factory using a chemical engineering software (ProSimPlus ® ) to perform Pinch and exergy analysis. Journal of Food Engineering, 225, 1–11. doi: 10.1016/j.jfoodeng.2018.01.004
Rein, P. (2007). Cane Sugar Engineering. Berlin: Verlag Dr. Albert Bartens KG.
Zhang, K., Liu, Z., Huang, S., & Li, Y. (2015). Process integration analysis and improved options for an MEA CO2 capture system based on the pinch analysis. Applied Thermal Engineering, 85, 214–224. doi: 10.1016/j.applthermaleng.2015.03.073
Article Metrics
Abstract has been read : 207 timesDOWNLOAD PDF file viewed/downloaded: 0 times
DOI: http://doi.org/10.25273/cheesa.v7i1.17831.1-14
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.