Effect of EDTA Addition on Acidizing Treatment Process
Abstract
Acidizing treatment is commonly used to solve scale problem on production equipment. In this process, Hydrochloric acid (HCl) is often used to treat CaCO3 scale, posing the risk of pipe corrosion due to its high corrosive characteristics. Thus, the purpose of this study was to determine the impact of adding EDTA additive into HCl solution during the acidifying treatment procedure. The methodology included various stages such as scale identification, chemical scale removal test using 7.5% and 15% HCL solution, 15% HCl solution test with EDTA as an additive, and corrosion determination using corrosion coupon. The results showed that 15% HCl solution was very effective in removing CaCO3 scale but had a high corrosion rate of 186.255 mpy. Furthermore, the addition of 10 mL EDTA solution as an additive removed scale and reduced corrosion rate by approximately 85%.
Keywords
Full Text:
DOWNLOAD PDFReferences
Irawan, A., & Isjudarto, A. (2016). Evaluasi Penanggulangan Problem Scale Pada Flowline Sumur Tlj-Xxx Di Pt. Pertamina Ep Asset Ii Field Prabumulih Sumatera Selatan. Teknik Pertambangan STTNAS Yogyakarta, 1–6.
Silva, C., Filho, D., Zanin, M., & Panossian, Z. (2021). Impact of Crude Oil Emulsion on Pipeline Corrosion. Journal of Petrochemical Engineering, 1(1), 11–19. doi: 10.36959/901/249
Alighiri, D., Fatmala, C., Syafi, I., & Haditya, E. B. (2018). Studi Pembentukan Scale CaCO3 dan CaSO4 pada Air Formasi Sumur Minyak di Cepu, Indonesia. Fisika, 8(1), 28–36. doi: 10.15294/jf.v8i1.14496
Ibrahim, P. A., & Fajri, A. N. (2020). Analisa Laju Pertumbuhan Silica Scaling pada Pipa Air Kondensat Scrubber Unit 5 di Industri Geothermal. Molecules, 2(1), 1–12. doi: 10.36418/jist.v1i4.42
Musmuliadi. (2020). Scale Pada Pipa Produksi Area Minas Dengan Injeksi Chemical Scale Inhibitor, 7(1), 69–76. doi: 10.37859/jst.v7i1.2352
Fatra, F., & Suwignyo, J. (2020). Analisa Pengaruh Penambahan Asam Tartrat Terhadap Pembentukan Kerak Di Dalam Pipa Pengeboran Minyak Bumi. Journal of Automotive Technology Vocational Education, 1(2), 1–8. doi: 10.31316/jatve.v1i2.991
Septiani, M., Santoso, K., & Abdul Majid, R. (2019). Efektivitas Asam Nitrat (HNO3) Sebagai Pelarut Alternatif Pada Proses Acid Wash Terhadap Plate Electrolyzer Di Pt Kaltim Nitrate Indonesia. Journal of Chemical Process Engineering, 3(2), 17. doi: 10.33536/jcpe.v3i2.258
Kinasih, R. C., Amin, M., & Prabu, U. A. (2013). Analisa Hasil Acidizing Treatment untuk Menanggulangi Scale CaCO3 dalam Upaya Mengoptimalkan Kemampuan Berproduksi Sumur R-11 PT. Pertamina EP Asset 2 Limau Field. Journal of Earth Energy Engineering, 7(April), 1.
Gamal, H., Elkatatny, S., Al-Afnan, S., & Bahgat, M. (2021). Development of a Unique Organic Acid Solution for Removing Composite Field Scales. ACS Omega, 6(2), 1205–1215. doi: 10.1021/acsomega.0c04335
Al-Shargabi, M., Davoodi, S., Wood, D. A., Ali, M., Rukavishnikov, V. S., & Minaev, K. M. (2022). A critical review of self-diverting acid treatments applied to carbonate oil and gas reservoirs. Petroleum Science. doi: https://doi.org/10.1016/j.petsci.2022.10.005
Tian, Y., Guo, W., Wang, W., Wang, B., Zhang, P., & Zhao, T. (2023). Influence of organic corrosion inhibitors on steel corrosion in concrete under the coupled action of freeze–thaw cycles and chloride attack. Construction and Building Materials, 368, 130385. doi: https://doi.org/10.1016/j.conbuildmat.2023.130385
Kahkesh, H., & Zargar, B. (2023). Estimating the anti-corrosive potency of 3-nitrophthalic acid as a novel and natural organic inhibitor on corrosion monitoring of mild steel in 1 M HCl solution. Inorganic Chemistry Communications, 158, 111533. doi: https://doi.org/10.1016/j.inoche.2023.111533
Kementerian Energi dan Sumber Daya Mineral. (2020). Sintesis Aditif Scale Removal Berbasis Asam Organik untuk Penanganan Scale Silika dan Karbonat Di Sumur Migas dan Panas Bumi. Jakarta.
Kayadoe, V. (2018). Kinerja arginin sebagai inhibitor korosi baja SS-304 dalam larutan HCl. MjoCE, 8(2), 103–112. doi: 10.30598/MJoCEvol8iss2pp103-112
Bolzoni, F., Brenna, A., & Ormellese, M. (2022). Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete. Cement and Concrete Research, 154, 106719. doi: https://doi.org/10.1016/j.cemconres.2022.106719
Chacon, O. G., & Pournik, M. (2022). Matrix Acidizing in Carbonate Formations. Processes. doi: 10.3390/pr10010174
Mohamed, A., Jr, D., & Bastidas, D. (2021). Significance of π–Electrons in the Design of Corrosion Inhibitors for Carbon Steel in Simulated Concrete Pore Solution. Corrosion, 77. doi: 10.5006/3844
Liu, Z., Zhang, F., Li, X., & Wang, D. (2023). Improved corrosion inhibition of calcium disodium EDTA for mild steel in chloride-contaminated concrete pore solution. Cement and Concrete Composites, 140, 105075. doi: 10.1016/J.CEMCONCOMP.2023.105075
Ahmad, N. M., & Said, L. (2015). Analisa Air Formasi dalam Menentukan Kecenderungan Pembentukan Scale pada Sumur X, Y dan Z. Seminar Nasional Cendekiawan, (ISSN: 2460-8696317), 317–325.
Liestyana, R., & Said. (2018). Analisa Air Formasi terhadap Kecenderungan Pembentukan Scale Calcium Carbonat (CaCO3) dan Calcium Sulfate (CaSO4). Prosiding Seminar Nasional Cendekiawan, 0(0), 725–734. doi: 10.25105/semnas.v0i0.3528
Norris, R., & Ryan, L. (2015). Essential Chemistry for Cambridge IGCSE®. OUP Oxford. Retrieved from https://books.google.co.id/books?id=xszKDwAAQBAJ
Abdulraheem, A. (2022). Impact of HCl Acidizing Treatment on Mechanical Integrity of Carbonaceous Shale. ACS Omega, 7(16), 13629–13643. doi: 10.1021/acsomega.1c07175
Jafarpour, H., Moghadasi, J., Khormali, A., Petrakov, D. G., & Ashena, R. (2019). Increasing the stimulation efficiency of heterogeneous carbonate reservoirs by developing a multi-bached acid system. Journal of Petroleum Science and Engineering, 172, 50–59. doi: 10.1016/j.petrol.2018.09.034
Xu, Z.-X., Li, S.-Y., Li, B.-F., Chen, D.-Q., Liu, Z.-Y., & Li, Z.-M. (2020). A review of development methods and EOR technologies for carbonate reservoirs. Petroleum Science, 17(4), 990–1013. doi: 10.1007/s12182-020-00467-5
Wang, G., & Li, H. (2023). Metal extraction and analysis. In M. J. Goss & M. B. T.-E. of S. in the E. (Second E. Oliver (Eds.), (pp. 50–57). Oxford: Academic Press. doi: https://doi.org/10.1016/B978-0-12-822974-3.00144-0
Raharjo, S. (2020). Pembentukan dan Pengendalian Kerak Mineral di dalam Pipa. Semarang, Jawa Tengah.
Afandi, Y. K., Arief, I. S., & Amiadji. (2015). Analisa Laju Korosi pada Pelat Baja Karbon dengan Variasi Ketebalan Coating. Institut Teknologi Sepuluh Nopember (ITS), 4(1), 1–5. doi: 10.12962/j23373539.v4i1.8931
Nurfajri, I., Naubnome, V., & Hanifi, R. (2022). Pengaruh Variasi Presentase HCL Terhadap Laju Korosi, Nilai Kekerasan dan Struktur Mikro Sambungan Las TIG Baja ST 60. Jurnal Ilmiah Wahana Pendidikan, 8(19), 480–488. doi: 10.5281/zenodo.7222820
Fouda, A. S., Rashwan, S., Emam, A., & El-Morsy, F. E. (2018). Corrosion Inhibition of Zinc in Acid Medium using some Novel Organic Compounds. International Journal of Electrochemical Science, 13(4), 3719–3744. doi: https://doi.org/10.20964/2018.04.23
Article Metrics
Abstract has been read : 195 timesDOWNLOAD PDF file viewed/downloaded: 0 times
DOI: http://doi.org/10.25273/cheesa.v6i2.15647.95-104
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.