Optimization of Ulva sp. Decomposition using H2SO4 with Microwave-Assisted Hydrolysis Method as Feedstock of Bioethanol

Downloads
Bioethanol is a renewable energy used to reduce dependence on fossil fuels, which have negative impacts on the environment. Furthermore, Ulva sp. contains high levels of carbohydrates, making it potentially suitable as a raw material for bioethanol production. Therefore, this study aims to determine the optimal decomposition process using the microwave-assisted hydrolysis method with an acid solvent (H2SO4), by examining the effects of acid concentration, hydrolysis time, and microwave power. Optimization was carried out using several parameters such as hydrolysis time, microwave power, and the ratio of raw materials to solvents. The ANOVA test results showed that the hydrolysis variable parameter had a significant effect on the reducing sugar content obtained, evidenced by the R2 value of 0.9892. The highest reducing sugar content of 19.71 mg/mL was produced under the operating conditions of 15 min hydrolysis time, 450 W microwave power, and 0.065 g/mL ratio of raw material to solvents.
Aiman, S. (2014). Perkembangan Teknologi Dan Tantangan Dalam Riset Bioetanol Di Indonesia. Jurnal Kimia Terapan Indonesia. DOI: 10.14203/jkti.v16i2.16
Aniriani, G. W., Apriliani, N. F., & Sulistiono, E. (2018). Hydrolysis of Polycoxarida Xylane Straw Using Strong Acid Acid Solution for Basic Materials of Bioetanol Production. Jurnal Ilmiah Sains, 18(2), 113-117.
Ardinata, R. A. & Manguntungi, B. (2020). Inovasi Pemanfaatan Ekstrak Alga Hijau Ulva sp dari Pantai Luk,Sumbawa Sebagai Kandidat Antibakteri Terhadap Salmonella thypi dan Staphylococcus aureus. Jurnal TAMBORA, 4(3), 1-6. DOI: 10.36761/jt.v4i3.785
Azhar, M., & Satriawan, D. A. (2018). Implementasi Kebijakan Energi Baru dan Energi Terbarukan Dalam Rangka Ketahanan Energi Nasional. Administrative Law and Governance Journal, 1(4), 398-412. DOI: 10.14710/alj.v1i4.398-412
Darojati, H. A. (2017). Prospek Pengembangan Teknologi Radiasi Sebagai Perlakuan Pendahuluan Biomassa Lignoselulosa. Jurnal Forum Nuklir, 11(2), 71. DOI: 10.17146/jfn.2017.11.2.5313
Dave, N., Selvaraj, R., Varadavenkatesan, T., & Vinayagam, R. (2019). A critical review on production of bioethanol from macroalgal biomass. Algal Research, 42(June), 101606. DOI: 10.1016/j.algal.2019.101606
Dave, N., Varadavenkatesan, T., Selvaraj, R., & Vinayagam, R. (2021). Modelling Of Fermentative Bioethanol Production From Indigenous Ulva Prolifera Biomass By Saccharomyces Cerevisiae Nfcci1248 Using An Integrated Ann-Ga Approach. Science of the Total Environment, 791, 148429. DOI: 10.1016/j.scitotenv.2021.148429
Dominguez, H., & Loret, E. P. (2019). Ulva lactuca, A Source of Troubles and Potential Riches. Marine Drugs, 17(6). DOI: 10.3390/md17060357
ElHarchi, M., Kachkach, F. Z., & ElMtili, N. (2018). Optimization Of Thermal Acid Hydrolysis For Bioethanol Production From Ulva Rigida With Yeast Pachysolen Tannophilus. South African Journal of Botany, 115, 161-169. DOI: 10.1016/j.sajb.2018.01.021
Galung, F. S. (2021). Analisis Kandungan Karbohidrat (Glukosa) Pada Salak Golla - Golla. Journal of Agritech Science, 5(1), 10-14
Greiserman, S., Epstein, M., Chemodanov, A., Steinbruch, E., Prabhu, M., Guttman, L., ... Golberg, A. (2019). Co-production of Monosaccharides and Hydrochar from Green Macroalgae Ulva (Chlorophyta) sp. with Subcritical Hydrolysis and Carbonization. Bioenergy Research, 12(4), 1090-1103. DOI: 10.1007/s12155-019-10034-5
Gusnedi, R. (2013). Analisis Nilai Absorbansi dalam Penentuan Kadar Flavonoid untuk Berbagai Jenis Daun Tanaman Obat. Pillar of Physics, 2, 76-83.
Habibah, F., Budi, S., Kusuma, W., & Wijayati, N. (2016). Produksi Substrat Fermentasi Bioetanol dari Alga Merah Gracilaria verrucosa. Indonesian Journal of Chemical Science, 5(1), 36-41. DOI: LINK
Hebbale, D., Bhargavi, R., & Ramachandra, T.V. (2019). Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria. Heliyon, 5(3), e01372. DOI: 10.1016/j.heliyon.2019.e01372
Hidayat, I. R., Zuhrotun, A., & Sopyan, I. (2020). Design-Expert Software sebagai Alat Optimasi Formulasi Sediaan Farmasi. Majalah Farmasetika, 6(1), 99-120. DOI: 10.24198/mfarmasetika.v6i1.27842
Jaya, D., Setiyaningtyas, R., & Prasetyo, S. (2018). Pembuatan Bioetanol Dari Alga Hijau Spirogyra Sp Bioethanol Production From Green Algae Spirogyra sp. Eksergi, 15(1), 16-19.
Jiang, R., Linzon, Y., Vitkin, E., Yakhini, Z., Chudnovsky, A., & Golberg, A. (2016). Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method. Scientific Reports, 6(June), 1-14. DOI: 10.1038/srep27761
Kavitha, S., Rajesh Banu, J., Kumar, G., Kaliappan, S., & Yeom, I. T. (2018). Profitable ultrasonic assisted microwave disintegration of sludge biomass: Modelling of biomethanation and energy parameter analysis. Bioresource Technology, 254(December 2017), 203-213. DOI: 10.1016/j.biortech.2018.01.072
Khan, H., Khan, I., & Binh, T. T. (2020). The heterogeneity of renewable energy consumption, carbon emission and financial development in the globe: A panel quantile regression approach. Energy Reports, 6, 859-867. DOI: 10.1016/j.egyr.2020.04.002
Kim, D. H., Lee, S. B., & Jeong, G. T. (2014). Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresource Technology, 161, 348-353. DOI: 10.1016/j.biortech.2014.03.078
Kolo, S. M. D., & Edi, E. (2018). Hidrolisis Ampas Biji Sorgum dengan Microwave untuk Produksi Gula Pereduksi sebagai Bahan Baku Bioetanol. Jurnal Saintek Lahan Kering, 1(2), 22-23. DOI: 10.32938/slk.v1i2.596
Kolo, S. M. D., Obenu, N. M., dan Tuas, M. Y. C. (2022). Pengaruh Pretreatment Makroalga Ulva Reticula Menggunakan Microwave Irradiation Untuk Produksi Bioetanol, 16(2), 212-219. DOI: 10.24843/JCHEM.2022.v16.i02.p12
Kolo, S. M. D., Presson, J., & Amfotis, P. (2021). Produksi Bioetanol Sebagai Energi Terbarukan Dari Rumput Laut Ulva Reticulata Asal Pulau Timor. ALCHEMY Jurnal Penelitian Kimia, 17(2), 159. DOI: 10.20961/alchemy.17.2.45476.159-167
Kolo, S. M. D., Wahyuningrum, D., & Hertadi, R. (2020). The Effects of Microwave-Assisted Pretreatment and Cofermentation on Bioethanol Production from Elephant Grass. International Journal of Microbiology, 2020. DOI: 10.1155/2020/6562730
Kostas, E. T., Beneroso, D., & Robinson, J. P. (2017). The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass. Renewable and Sustainable Energy Reviews, 77(November 2016), 12-27. DOI: 10.1016/j.rser.2017.03.135
Kostas, E. T., White, D. A., & Cook, D. J. (2020). Bioethanol Production from UK Seaweeds: Investigating Variable Pre-treatment and Enzyme Hydrolysis Parameters. Bioenergy Research, 13(1), 271-285. DOI: 10.1007/s12155-019-10054-1
Kumar, M. D., Kaliappan, S., Gopikumar, S., Zhen, G., & Banu, J. R. (2019). Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel, 253(March), 833-839. DOI: 10.1016/j.fuel.2019.05.066
Kusmiyati, K., Heratri, A., Kubikazari, S., Hidayat, A., & Hadiyanto, H. (2020). Hydrolysis of microalgae spirulina platensis, chlorella sp., and macroalgae ulva lactuca for bioethanol production. International Energy Journal, 20(4), 611-620.
Lastriyanto, A. & Aulia, A. I. (2021). Analisa Kualitas Madu Singkong (Gula Pereduksi, Kadar Air, dan Total Padatan Terlarut) Pasca Proses Pengolahan dengan Vacuum Cooling. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan, 9(2), 110-114. DOI: 10.29244/jipthp.9.2.110-114
Li, Y., Cui, J., Zhang, G., Liu, Z., Guan, H., Hwang, H., …Wang, P. (2016). Optimization Study On The Hydrogen Peroxide Pretreatment And Production Of Bioethanol From Seaweed Ulva Prolifera Biomass. Bioresource Technology, 214, 144-149. DOI: 10.1016/j.biortech.2016.04.090
Margareta, W., Nagarajan, D., Chang, J. S., & Lee, D. J. (2020). Dark fermentative hydrogen production using macroalgae (Ulva sp.) as the renewable feedstock. Applied Energy, 262(December 2019), 114574. DOI: 10.1016/j.apenergy.2020.114574
Ngamput, H. M. A., & Herrani, R. (2019). The Effect Of Differentiation Of Hydrolysis Time Towards Ethanol Levels Produced Through Ulva Lactuca Fermentation. Journal of Physics: Conference Series, 1241(1). DOI: 10.1088/1742-6596/1241/1/012010
Nugroho, D., & Rianto, A. (2022). Strategi Indonesia Dalam Mengurangi Emisi Karbon Dioksida (CO2) Di Masa New Normal. Prosiding Ilmu Pemerintahan, 1(1), 228-242.
Nur, O. (2014). Chlorophyta. Implementation Science, 39(1), 1-24.
Offei, F., Mensah, M., & Thygesen, A. (2018). Produksi Bioetanol Rumput Laut: Seleksi Proses Ulasan tentang Hidrolisis dan Fermentasi. DOI: 10.3390/fermentasi4040099
Copyright (c) 2023 CHEESA: Chemical Engineering Research Articles

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
With the receipt of the article by CHEESA Editorial Board and the decision to be published, the copyright regarding the article will be transferred to CHEESA Journal.
CHEESA has the right to multiply and distribute the article and every author is not allowed to publish the same article that was published in this journal.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Under the following terms:
Attribution ” You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial ” You may not use the material for commercial purposes.
ShareAlike ” If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.