Optimization Production and Characterization of Bacterial Cellulose from Cornhusk
Abstract
Cornhusks are agricultural wastes with low economic value that will cause environmental pollution if not appropriately handled. Cornhusk waste can be processed as raw material for bacterial cellulose (nata) since it contains 44% cellulose. This study aims to optimize bacterial cellulose production from cornhusks and determine the effect of cornhusk mass and fermentation duration on the characteristics of the nata produced. The primary process for producing bacterial cellulose from cornhusks was fermentation by Acetobacter xylinum. The nata characterization carried out in this study includes thickness, yield, crude fiber, and moisture content, as well as statistical analysis to determine whether there was significant effect of variations in cornhusk mass and fermentation duration on bacterial cellulose production. Based on the results of optimizing the production of nata from cornhusks, the optimal mass of cornhusks was of 25 grams with fermentation duration of 17 days. Based on the characterization and data analysis results, variation on the cornhusks mass and duration of the fermentation had a significant effect on fiber content, yield, and tensile strength of bacterial cellulose from cornhusks. On the other hand, the variations on cornhusks mass and the duration of fermentation did not significantly affect the moisture content and thickness of bacterial cellulose from cornhusks.
Keywords
Full Text:
DOWNLOAD PDFReferences
Abral, H., Chairani, M. K., Rizki, M. D., Mahardika, M., Handayani, D., Sugiarti, E., … Ilyas, R. A. (2021). Characterization of compressed bacterial cellulose nanopaper film after exposure to dry and humid conditions. Journal of Materials Research and Technology, 11, 896–904. DOI: 10.1016/J.JMRT.2021.01.057
Abral, H., Pratama, A. B., Handayani, D., Mahardika, M., Aminah, I., Sandrawati, N., … Ilyas, R. A. (2021). Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers/Starch/Chitosan for a Food Packaging Alternative. International Journal of Polymer Science, 2021, 6641284. DOI: 10.1155/2021/6641284
Barud, H. S., Regiani, T., Marques, R. F. C., Lustri, W. R., Messadeq, Y., & Ribeiro, S. J. L. (2011). Antomicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes. Journal of Nanomaterials, 8(6), 1–8. DOI: 10.1155/2011/721631
Cazón, P., Velazquez, G., & Vázquez, M. (2020). Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocolloids, 99, 105323. DOI: 10.1016/J.FOODHYD.2019.105323
Galdino, C. J. S., Maia, A. D., Meira, H. M., Souza, T. C., Amorim, J. D. P., Almeida, F. C. G., … Sarubbo, L. A. (2020). Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochemistry, 91, 288–296. DOI: 10.1016/J.PROCBIO.2019.12.020
Joshi, S., Goyal, S., & Reddy, M. S. (2018). Corn steep liquor as a nutritional source for biocementation and its impact on concrete structural properties. Journal of Industrial Microbiology and Biotechnology, 45(8), 657–667. DOI: 10.1007/s10295-018-2050-4
Jozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., Pessoa-Jr, A., … Chaud, M. V. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied microbiology and biotechnology, 100, 2063–2072.
Kamiński, K., Jarosz, M., Grudzień, J., Pawlik, J., Zastawnik, F., Pandyra, P., & Kołodziejczyk, A. M. (2020). Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles. Cellulose, 27(9), 5353–5365. DOI: 10.1007/s10570-020-03128-3
Kurniawan, F., Sulistiyana, I. U., & Ulfin, I. (2014). New bacterial cellulose membranes from chayote fruit and bamboo shoots. Int. J. Appl. Chem, 10(2), 101–112.
Li, S., Warzywoda, J., Wang, S., Ren, G., & Fan, Z. (2017). Bacterial cellulose derived carbon nanofiber aerogel with lithium polysulfide catholyte for lithium–sulfur batteries. Carbon, 124, 212–218.
Lin, C.-M., Chang, Y.-C., Cheng, L.-C., Liu, C.-H., Chang, S. C., Hsien, T.-Y., … Hsieh, H.-J. (2020). Preparation of graphene-embedded hydroxypropyl cellulose/chitosan/polyethylene oxide nanofiber membranes as wound dressings with enhanced antibacterial properties. Cellulose, 27(5), 2651–2667. DOI: 10.1007/s10570-019-02940-w
Maneerung, T., Tokura, S., & Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 72(1), 43–51. DOI: 10.1016/j.carbpol.2007.07.025
Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., … Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. DOI: 10.1016/J.EURPOLYMJ.2019.109365
Putriana, I., & Aminah, S. (2013). Physical quality, Dietary Fiber and Organoleptic Characteristic from Nata de Cassava Based time of Fermentation. Jurnal Pangan dan Gizi, 4(07).
Sulistiyana. (2020). Analisis Kualitas Nata De Corn Dari Ekstrak Jagung Kuning Muda Dengan Variasi Lama Fermentasi. Indonesian Journal of Chemical Research, 8(1), 79-84. DOI: 10.30598/10.30598//ijcr.2020.8-sul
Xiao, X., Hou, Y., Liu, Y., Liu, Y., Zhao, H., Dong, L., … Luo, G. (2013). Classification and analysis of corn steep liquor by UPLC/Q-TOF MS and HPLC. Talanta, 107, 344–348. DOI: 10.1016/J.TALANTA.2013.01.044
Article Metrics
Abstract has been read : 355 timesDOWNLOAD PDF file viewed/downloaded: 0 times
DOI: http://doi.org/10.25273/cheesa.v6i1.11781.49-55
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.