Comparative Effect of Honey Bee Venom and Common Antifungal Agents on Candida albicans

shahin Gavanji, Azizollah Bakhtari

Abstract


Fungal infections, can cause various symptoms in different forms, and are associated with high morbidity and mortality in vulnerable groups. one of the most significant fungal infection is candidiasis which caused by Candida. In recent years, there has been growing worried about the challenging of fungal diseases treatment and unwanted consequence of synthetic antifungal drugs. This necessitates the searching for new classes of broad-spectrum anti-fungal drugs to bring pharmaceutical characteristics and more efficient treatments. Bee venom (BV) is an antimicrobial agent which has been widely used to treat various diseases. the aim of the current study was to examine the antifungal properties of honey bee venom on Candida albicans to compare it to some common antifungal drugs (ketoconazole and amphotericin B). to perform this assay, the standard strains of C. albicans (ATCC10231) was used for antimicrobial assessment, and Disc diffusion assay and the microbroth dilution method were used to evaluate the anti fungal activity of (BV). The result of this study showed that BV, amphotericin B and ketoconazole had inhibitory effects on C. albicans which MIC of the were measured to be 118.2, 3.3 and 2 respectively, furthermore, Comparison of BV and common antifungal drugs demonstrated that, amphotricin B and ketoconazole have a better effect on C. albicans.


Keywords


Candida albicans; bee venom (BV); antifungal; pharmacology; infections

Full Text:

PDF

References


AL-Ani, I., Zimmermann, S., Reichling, J., & Wink, M. (2015). Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine, 22(2), 245–255. https://doi.org/https://doi.org/10.1016/j.phymed.2014.11.019

Bachis, A., Cruz, M. I., & Mocchetti, I. (2010). M-tropic HIV envelope protein gp120 exhibits a different neuropathological profile than T-tropic gp120 in rat striatum. The European Journal of Neuroscience, 32(4), 570–578. https://doi.org/10.1111/j.1460-9568.2010.07325.x

Bhagawan, W. S., & Kusumawati, D. (2021). Ethnobotanical Medicinal Plant Study of Tengger tribe in Ranu Pani Village, Indonesia. Proceedings of the the 3rd International Conference on Education & Social Science Research (ICESRE) 2020. https://doi.org/https://doi.org/10.2139/ssrn.3865725

Bhagawan, W. S., Suproborini, A., Prastya Putri, D. L., Nurfatma, A., & Tri Putra, R. (2022). Ethnomedicinal study, phytochemical characterization, and pharmacological confirmation of selected medicinal plant on the northern slope of Mount Wilis, East Java, Indonesia. Biodiversitas Journal of Biological Diversity, 23(8), 9–25. https://doi.org/https://doi.org/10.13057/biodiv/d230855

Ceremuga, M., Stela, M., Janik, E., Gorniak, L., Synowiec, E., Sliwinski, T., Sitarek, P., Saluk-Bijak, J., & Bijak, M. (2020). Melittin-A Natural Peptide from Bee Venom Which Induces Apoptosis in Human Leukaemia Cells. Biomolecules, 10(2). https://doi.org/10.3390/biom10020247

El-Didamony, S. E., Amer, R. I., & El-Osaily, G. H. (2022). Formulation, characterization and cellular toxicity assessment of a novel bee-venom microsphere in prostate cancer treatment. Scientific Reports, 12(1), 13213. https://doi.org/10.1038/s41598-022-17391-w

El Mehdi, I., Falcão, S. I., Boujraf, S., Mustapha, H., Campos, M. G., & Vilas-Boas, M. (2022). Analytical methods for honeybee venom characterization. Journal of Advanced Pharmaceutical Technology & Research, 13(3), 154–160. https://doi.org/10.4103/japtr.japtr_166_21

Fuentefria, A. M., Pippi, B., Dalla Lana, D. F., Donato, K. K., & de Andrade, S. F. (2018). Antifungals discovery: an insight into new strategies to combat antifungal resistance. Letters in Applied Microbiology, 66(1), 2–13. https://doi.org/10.1111/lam.12820

Gavanji, S., & Larki, B. (2017). Comparative effect of propolis of honey bee and some herbal extracts on Candida albicans. Chinese Journal of Integrative Medicine, 23(3), 201–207. https://doi.org/10.1007/s11655-015-2074-9

Gavanji, S., Larki, B., & Bakhtari, A. (2014). The effect of extract of Punica granatum var. pleniflora for treatment of minor recurrent aphthous stomatitis. Integrative Medicine Research, 3(2), 83–90. https://doi.org/10.1016/j.imr.2014.03.001

Gavanji, S., Mohammadi, E., Larki, B., & Bakhtari, A. (2014). Antimicrobial and cytotoxic evaluation of some herbal essential oils in comparison with common antibiotics in bioassay condition. Integrative Medicine Research, 3(3), 142–152. https://doi.org/10.1016/j.imr.2014.07.001

Gavanji, S., Zaker, S. R., Nejad, Z. G., Bakhtari, A., Bidabadi, E. S., & Larki, B. (2015). Comparative efficacy of herbal essences with amphotricin B and ketoconazole on Candida albicans in the in vitro condition. Integrative Medicine Research, 4(2), 112–118. https://doi.org/10.1016/j.imr.2015.01.003

Gu, H., Han, S. M., & Park, K.-K. (2020). Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins, 12(3). https://doi.org/10.3390/toxins12030195

Han, S. M., Kim, J. M., Hong, I. P., Woo, S. O., Kim, S. G., Jang, H. R., & Pak, S. C. (2016). Antibacterial Activity and Antibiotic-Enhancing Effects of Honeybee Venom against Methicillin-Resistant Staphylococcus aureus. Molecules (Basel, Switzerland), 21(1), 79. https://doi.org/10.3390/molecules21010079

Hood, J. L., Jallouk, A. P., Campbell, N., Ratner, L., & Wickline, S. A. (2013). Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral Therapy, 18(1), 95–103. https://doi.org/10.3851/IMP2346

Hossen, M. S., Shapla, U. M., Gan, S. H., & Khalil, M. I. (2016). Impact of Bee Venom Enzymes on Diseases and Immune Responses. Molecules (Basel, Switzerland), 22(1). https://doi.org/10.3390/molecules22010025

Houšť, J., Spížek, J., & Havlíček, V. (2020). Antifungal Drugs. Metabolites, 10(3). https://doi.org/10.3390/metabo10030106

Kim, J.-H., Ryu, J.-S., & Lee, M.-Y. (2014). Inhibitory effect of bee venom on the growth of Trichomonas vaginalis. Toxicology and Environmental Health Sciences, 6(1), 48–53. https://doi.org/10.1007/s13530-014-0187-8

Leandro, L. F., Mendes, C. A., Casemiro, L. A., Vinholis, A. H. C., Cunha, W. R., de Almeida, R., & Martins, C. H. G. (2015). Antimicrobial activity of apitoxin, melittin and phospholipase A₂ of honey bee (Apis mellifera) venom against oral pathogens. Anais Da Academia Brasileira de Ciencias, 87(1), 147–155. https://doi.org/10.1590/0001-3765201520130511

Lee, J. A., Son, M. J., Choi, J., Yun, K.-J., Jun, J. H., & Lee, M. S. (2014). Bee venom acupuncture for rheumatoid arthritis: a systematic review protocol. BMJ Open, 4(4), e004602. https://doi.org/10.1136/bmjopen-2013-004602

Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119–128. https://doi.org/10.4161/viru.22913

Park, J., Kwon, O., An, H.-J., & Park, K. K. (2018). Antifungal Effects of Bee Venom Components on Trichophyton rubrum: A Novel Approach of Bee Venom Study for Possible Emerging Antifungal Agent. Annals of Dermatology, 30(2), 202–210. https://doi.org/10.5021/ad.2018.30.2.202

Rayens, E., & Norris, K. A. (2022). Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018. Open Forum Infectious Diseases, 9(1), ofab593. https://doi.org/10.1093/ofid/ofab593

Saracino, I. M., Foschi, C., Pavoni, M., Spigarelli, R., Valerii, M. C., & Spisni, E. (2022). Antifungal Activity of Natural Compounds vs. Candida spp.: A Mixture of Cinnamaldehyde and Eugenol Shows Promising In Vitro Results. Antibiotics (Basel, Switzerland), 11(1). https://doi.org/10.3390/antibiotics11010073

Socarras, K. M., Theophilus, P. A. S., Torres, J. P., Gupta, K., & Sapi, E. (2017). Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi. Antibiotics (Basel, Switzerland), 6(4). https://doi.org/10.3390/antibiotics6040031

Soltan-Alinejad, P., Alipour, H., Meharabani, D., & Azizi, K. (2022). Therapeutic Potential of Bee and Scorpion Venom Phospholipase A2 (PLA2): A Narrative Review. Iranian Journal of Medical Sciences, 47(4), 300–313. https://doi.org/10.30476/IJMS.2021.88511.1927

Torabi, I., Sharififar, F., Izadi, A., & Ayatollahi Mousavi, S. A. (2022). Inhibitory effects of different fractions separated from standardized extract of Myrtus communis L. against nystatin-susceptible and nystatin-resistant Candida albicans isolated from HIV positive patients. Heliyon, 8(3), e09073. https://doi.org/10.1016/j.heliyon.2022.e09073

Uddin, M. B., Lee, B.-H., Nikapitiya, C., Kim, J.-H., Kim, T.-H., Lee, H.-C., Kim, C. G., Lee, J.-S., & Kim, C.-J. (2016). Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. Journal of Microbiology (Seoul, Korea), 54(12), 853–866. https://doi.org/10.1007/s12275-016-6376-1

Wehbe, R., Frangieh, J., Rima, M., El Obeid, D., Sabatier, J.-M., & Fajloun, Z. (2019). Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules (Basel, Switzerland), 24(16). https://doi.org/10.3390/molecules24162997

White, T. C., Marr, K. A., & Bowden, R. A. (1998). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clinical Microbiology Reviews, 11(2), 382–402. https://doi.org/10.1128/CMR.11.2.382

Xie, J., Zhang, A.-H., Sun, H., Yan, G.-L., & Wang, X.-J. (2018). Recent advances and effective strategies in the discovery and applications of natural products. RSC Advances, 8(2), 812–824. https://doi.org/10.1039/c7ra09475b

Ying, Y.-H., Lee, W.-L., Chi, Y.-C., Chen, M.-J., & Chang, K. (2022). Demographics, Socioeconomic Context, and the Spread of Infectious Disease: The Case of COVID-19. International Journal of Environmental Research and Public Health, 19(4). https://doi.org/10.3390/ijerph19042206

Zinner, S. H. (2005). The search for new antimicrobials: why we need new options. Expert Review of Anti-Infective Therapy, 3(6), 907–913. https://doi.org/10.1586/14787210.3.6.907


Article Metrics

Abstract has been read : 331 times
PDF file viewed/downloaded: 0 times


DOI: http://doi.org/10.25273/pharmed.v5i2.13468

Refbacks

  • There are currently no refbacks.


INDEXED BY

  

View My Stats

Pharmed is licensed under Attribution-NonCommercial-ShareAlike 4.0 International