Analisis Spasial Perubahan Suhu Permukaan Daratan Kota Kupang Menggunakan Data Penginderaan Jauh

Authors

  • Philia Christi Latue Universitas Pattimura
  • Heinrich Rakuasa Universitas Pattimura
  • Daniel Anthoni Sihasale Universitas Pattimura

DOI:

https://doi.org/10.25273/doubleclick.v8i1.16651

Keywords:

spatial analysis, google earth engine, land surface temperature, kupang

Abstract

Suhu permukaan daratan di Kota Kupang mengalami peningkatan dari tahun 2018-2023, salah satu faktor penyebabnya yaitu terjadinya perkembangan lahan terbangun yang semakin meningkat setiap tahunnya. Penelitian ini menggunakan data citra Landsat 8 Collection 1 Tier 2 TOA Reflectance pada google earth engine. Untuk menganalisis suhu permukaan daratan (LST) pada citra Landsat 8 menggunakan Google Earth Engine (GEE) berbasis cloud computing dengan menggunakan formula "Single Channel Algorithm" atau "Split-Window Algorithm". Hasil penelitian menunjukan bahwa nilai suhu permukaan daratan tertinggi di tahun 2018 berkisar 21,09ᵒ C – 30,79ᵒ C dan mengalami peningkatan di tahun 2023 menjadi 22,06ᵒ C – 34,99ᵒ C. Suhu permukaan pada kelas tinggi dan sangat tinggi terdistribusi di daerah pesisir yang megalami perkembangan lahan terbangun yang tinggi dan  yang juga merupakan daerah pusat Kota Kupang. Hasil peneltian diharapkan dapat memberikan manfaat yang besar bagi Pemerintah setempat dalam merencanakan dan mengambil keputusan dalam berbagai sector diantaranya pengembangan sektor pertanian, pengelolaan sumber daya air, dan penanggulangan bencana.

Downloads

Download data is not yet available.

References

Angin, I. S., & Sunimbar, S. (2021). Analisis Perubahan Penggunaan Lahan Kota Kupang Nusa Tenggara Timur Tahun 2010-2018. Geoedusains: Jurnal Pendidikan Geografi, 2(1), 36–52. https://doi.org/10.30872/geoedusains.v2i1.564

Chen, Y., Yang, J., Yu, W., Ren, J., Xiao, X., & Xia, J. C. (2023). Relationship between urban spatial form and seasonal land surface temperature under different grid scales. Sustainable Cities and Society, 89, 104374. https://doi.org/10.1016/j.scs.2022.104374

Ermida, S. L., Soares, P., Mantas, V., Göttsche, F.-M., & Trigo, I. F. (2020). Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sensing, 12(9), 1471. https://doi.org/10.3390/rs12091471

Fonseka, H. P. U., Zhang, H., Sun, Y., Su, H., Lin, H., & Lin, Y. (2019). Urbanization and Its Impacts on Land Surface Temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to 2016. Remote Sensing, 11(8), 957. https://doi.org/10.3390/rs11080957

Ghanbari, R., Heidarimozaffar, M., Soltani, A., & Arefi, H. (2023). Land surface temperature analysis in densely populated zones from the perspective of spectral indices and urban morphology. International Journal of Environmental Science and Technology, 20(3), 2883–2902. https://doi.org/10.1007/s13762-022-04725-4

Kanga, S., Meraj, G., Johnson, B. A., Singh, S. K., PV, M. N., Farooq, M., Kumar, P., Marazi, A., & Sahu, N. (2022). Understanding the Linkage between Urban Growth and Land Surface Temperature—A Case Study of Bangalore City, India. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174241

Khan, R., Li, H., Basir, M., Chen, Y. L., Sajjad, M. M., Haq, I. U., Ullah, B., Arif, M., & Hassan, W. (2022). Monitoring land use land cover changes and its impacts on land surface temperature over Mardan and Charsadda Districts, Khyber Pakhtunkhwa (KP), Pakistan. Environmental Monitoring and Assessment, 194(6), 409. https://doi.org/10.1007/s10661-022-10072-1

Latue, P. C., Rakuasa, H., Somae, G., & Muin, A. (2023). Analisis Perubahan Suhu Permukaan Daratan di Kabupaten Seram Bagian Barat Menggunakan Platform Berbasis Cloud Google Earth Engine. Sudo Jurnal Teknik Informatika, 2(2), 45–51. https://doi.org/https://doi.org/10.56211/sudo.v2i2.261

Latue, P. C. (2023). Analysis of Surface Temperature in Buru District Using Cloud Computing on Google Earth Engine. Journal of Multidisciplinary Science, 2(1), 1–10.

Prayogo, L. M. (2021). (2023). Platform Google Earth Engine Untuk Pemetaan Suhu Permukaan Daratan Dari Data Series Modis. DoubleClick: Journal of Computer and Information Technology, 5(1), 25–31.

Rakuasa, H. (2022). ANALISIS SPASIAL TEMPORAL SUHU PERMUKAAN DARATAN/ LAND SURFACE TEMPERATURE (LST) KOTA AMBON BERBASIS CLOUD COMPUTING: GOOGLE EARTH ENGINE. Jurnal Ilmiah Informatika Komputer, 27(3), 194–205. https://doi.org/10.35760/ik.2022.v27i3.7101

Sasky, P., Sobirin, S., & Wibowo, A. (2017). Pengaruh Perubahan Penggunaan Tanah Terhadap Suhu Permukaan Daratan Metropolitan Bandung Raya Tahun 2000–2016. Prosiding Industrial Research Workshop and National Seminar, 354–361. https://doi.org/https://doi.org/10.35313/irwns.v8i3.767

Siqi, J., Yuhong, W., Ling, C., & Xiaowen, B. (2023). A novel approach to estimating urban land surface temperature by the combination of geographically weighted regression and deep neural network models. Urban Climate, 47, 101390. https://doi.org/10.1016/j.uclim.2022.101390

Tahooni, A., Kakroodi, A. A., & Kiavarz, M. (2023). Monitoring of land surface albedo and its impact on land surface temperature (LST) using time series of remote sensing data. Ecological Informatics, 75, 102118. https://doi.org/10.1016/j.ecoinf.2023.102118

Ullah, W., Ahmad, K., Ullah, S., Tahir, A. A., Javed, M. F., Nazir, A., Abbasi, A. M., Aziz, M., & Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(2), e13322. https://doi.org/10.1016/j.heliyon.2023.e13322

Zhang, M., Kafy, A.- Al, Xiao, P., Han, S., Zou, S., Saha, M., Zhang, C., & Tan, S. (2023). Impact of urban expansion on land surface temperature and carbon emissions using machine learning algorithms in Wuhan, China. Urban Climate, 47, 101347. https://doi.org/10.1016/j.uclim.2022.101347

Downloads

Published

31-08-2024