Detection of Motorcycle Tire Endurance based on Tire Load Index using CNN

Birawa Kaca Buana Gora, Nugroho Tegar Maulana, Muhamad Novan Aulia Zam Zami, Anan Nugroho, Alfa Faridh Suni

Abstract


With increasingly rapid technological developments, the production of motorized vehicles will increase with the use of robotic power in production. The increasing number of motorized vehicles in big cities does not escape the rise of traffic accidents that occur. One aspect of accidents that we usually underestimate is the resistance of our vehicle tires to support the load on the vehicle. Therefore, we need a system to detect the resistance of a tire in supporting the load on the vehicle. For this reason, this study was conducted to detect the durability of motorcycle tires based on tire load index using a convolutional neural network. A 70% result was found in classifying tire resistance based on tire load index.


Keywords


Tire load index; Convolutional Neural Network; Motorcycle; Endurance

Full Text:

PDF

References


Asosiasi Industri Sepeda Motor Indonesia. (2020). Statistic Distribution. Retrieved June 23, 2022, from www.aisi.or.id: https://www.aisi.or.id/statistic/

Badan Pusat Statistik. (2018). Statistik Transportasi Darat 2018. Jakarta: Badan Pusat Statistik.

Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: a review of models, methodologies, and applications to object detection. Progress in Artificial Intelligence, 9(2), 85-112.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Karim, H., Niakan, S. R., & Safdari, R. (2018). Comparison of neural network training algorithms for classification of heart diseases. IAES International Journal of Artificial Intelligence, 7(4), 185.

Khan, S., Rahmani, H., Shah, S. A. A., & Bennamoun, M. (2018). A guide to convolutional neural networks for computer vision. Synthesis lectures on computer vision, 8(1), 1-207.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

Nanda, A. M. (2021, March). Masih Disepelekan, Bahaya Muatan Berlebih Bagi Pengendara Motor. Retrieved June 23, 2022, from https://otomotif.kompas.com/read/2021/03/29/112200315/masih-disepelekan-bahaya-muatan-berlebih-bagi-pengendara-motor

Nugroho, P. A., Fenriana, I., & Arijanto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network (Cnn) Pada Ekspresi Manusia. Algor, 2(1), 12-20.

Nurhikmat, T. (2018). Implementasi deep learning untuk image classification menggunakan algoritma Convolutional Neural Network (CNN) pada citra wayang golek.

RMSProp. (2013). Retrieved June 21, 2022, from climin.readthedocs.io: https://climin.readthedocs.io/en/latest/rmsprop.html

Shafira, T. (2018). Implementasi Convolutional Neural Networks Untuk Klasifikasi Citra Tomat Menggunakan Keras. Yogyakarta: Skripsi UII.

Sumardi, D. G. (2019). Implementasi Algoritma CNN Dalam Klasifikasi Gangguan Mata Menggunakan Pendekatan Image Processing. Yogyakarta: Skripsi UII.

Yao, G., Lei, T., & Zhong, J. (2019). A review of convolutional-neural-network-based action recognition. Pattern Recognition Letters, 118, 14-22.


Article Metrics

Abstract has been read : 257 times
PDF file viewed/downloaded: 0 times


DOI: http://doi.org/10.25273/doubleclick.v7i1.12995

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 DoubleClick: Journal of Computer and Information Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexed By.

 

   

   

 

Kantor Sekertariat:
Program Studi Informatika, Fakultas Teknik
Universitas PGRI Madiun
Jl. Auri No. 14-16  Kota Madiun 63118
E-mail :  doubleclick@unipma.ac.id
 
 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

View My Stats