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ABSTRACT 
This study aimed to test the volatility model of BBCA and BMRI stocks on 
the IDX. The research problem is whether there is an influence of BBCA 
and LQ45 volatility on BMRI and vice versa. The study also tested 
whether BRIS's volatility was influenced by its majority shareholder, 
BMRI. The EGARCH model analyzed daily return data for 2015-2022 in 
bearish/bullish markets. The results showed that the data experienced 
heteroscedasticity problems, and the EGARCH Student's model was 
selected. The volatility of BBCA and BMRI returns does not affect each 
other but is influenced by LQ45 when bearish/bullish. The volatility of 
BRIS returns is influenced by BMRI only when it is bearish and the LQ45 
index when bullish. The implications of the research prove the 
independence of stock investors (BMRI and BBCA) in making decisions. 
However, it was indicated that both investors were influenced by the 
decisions of most investors, which was reflected in the significance of the 
LQ45 index. 
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ABSTRAK 

Tujuan penelitian ini adalah untuk menguji model volatilitas saham BBCA dan 
BMRI di BEI. Permasalahan penelitiannya adalah apakah terdapat pengaruh 
volatilitas return saham BBCA dan LQ45 terhadap BMRI dan sebaliknya. 
Penelitian tersebut juga menguji apakah volatilitas BRIS dipengaruhi oleh return 
saham pemegang saham mayoritasnya, BMRI. Model EGARCH digunakan 
untuk menganalisis data return harian tahun 2015-2022 saat pasar 
bearish/bullish. Hasil penelitian menunjukkan bahwa data mengalami masalah 
heteroskedastisitas dan model EGARCH Student's-t yang dipilih. Volatilitas 
return BBCA dan BMRI tidak saling mempengaruhi, namun dipengaruhi oleh 
LQ45 saat bearish/bullish. Volatilitas imbal hasil BRIS hanya dipengaruhi oleh 
BMRI saat bearish dan indeks LQ45 saat bullish. Implikasi penelitian 
membuktikan independensi investor saham (BMRI dan BBCA) dalam mengambil 
keputusan. Namun kedua investor tersebut terindikasi dipengaruhi keputusan 
mayoritas investor yang tercermin signifikansinya indeks LQ45. 
  
Kata Kunci : EGARCH; Heteroskedastisitas; Volatilitas; Return; Indeks 
JEL Classification: G17 
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INTRODUCTION 
Investment decisions in the capital market need to consider market volatility 

conditions. Volatility refers to price fluctuations as a reflection of investor decisions on 
information that occurs (Mieg, 2022). Xiao and Aydemir (2007) relate volatility to a 
measure of risk, where the higher the volatility of financial asset prices, the greater the 
risk. Factors influencing volatility include investor sentiment on domestic economic 
news/events and global markets (Baele, 2005) or uncertainty conditions (Su et al., 
2019). Therefore, understanding stock market volatility is important in making 
investment decisions. 

Volatility analysis is essential for investors, traders, and fund managers to design 
trading strategies and minimize the risk of loss (Campasano, 2021). Investing in blue-
chip or growth stocks is part of a strategy to avoid the risk of loss due to high market 
volatility. Leading stocks on the Indonesia Stock Exchange (IDX) in the financial and 
banking sectors include PT. Bank Central Asia, Tbk. (BBCA) and PT. Bank Mandiri, 
Tbk.(BMRI), while PT. Bank Syariah Indonesia, Tbk.(BRIS) is a growing stock due to 
the merger of some of the largest Sharia-based banks in Indonesia. 
Table 1. BBCA, BMRI, and BRIS Conditions in 2022 

Information BBCA BMRI BRIS 

Assets (billion Rp) 1.283 1.570 305 
Equity (billion Rp) 212 211 33 
Return on Equity (ROE) 21.70 22.62 16.84 
Loan/Financing to Deposit Ratio (LDR/FDR in %)  65.23 77.61 79.37 
Market capitalization (trillion Rp) 1,078 529 69 

Source: https://ojk.go.id/id/kanal/perbankan/data-dan-statistik/laporan-keuangan-
perbankan/default.aspx 
 

Three stocks were used in this study for several reasons. BMRI is the largest 
bank (assets) owned by the Indonesian government (52%), while BBCA is the largest 
private bank in which PT Dwimuria Investama Andalan is the majority shareholder 
(54.96%). Although BMRI's assets are more significant than BBCA's (Table 1), the 
amount of equity and the ratio of ROE are almost the same. Meanwhile, BMRI's credit 
level compared to deposits (LDR) is more significant than BBCA's. High LDR indicates 
the size of lending and higher risk. BBCA has the highest market capitalization in the 
banking sector, reflecting the large amount of investor funds invested in this stock. 
Both banks show high competition. Meanwhile, BRIS is majority-owned by large state-
owned banks (51.47% PT Bank Mandiri, Tbk.; 23.24% PT Bank BNI, Tbk.; 15.38% PT 
Bank BRI, Tbk. and 9.91% public) (https://ir.bankbsi.co.id/shareholdings.html).  

The stock price fluctuations of BMRI and BBCA (Figure 1) have similar 
trends under the fluctuations of the LQ45 index in the last eight years. However, 
since 2018, BBCA's stock performance has grown higher than that of BMRI. 
Meanwhile, BRIS shares (since June 1, 2018) have experienced high fluctuations 
since rumors of merging BRI Syariah shares with other Islamic banks (BMRI and 
BBNI). Even the global financial crisis due to the 2020 pandemic made BBCA 
and BMRI's share prices experience a decline; BRIS shares did not experience 
this. 

Empirical research on stock volatility is generally associated with company 
performance, including liquidity (Będowska-Sójka &; Kliber, 2019; Mortazian, 2022; 
Cheriyan & Lazar, 2019), leverage (Rathgeber et al., 2021; Chon & Kim, 2021), 
profitability (de Silva, 2017; Wijayanti et al., 2023) as well as external factors such as 
exchange rates (Kennedy &; Nourizad, 2016; Blau, 2018), interest rates (Banerjee & 
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Kumar, 2009; Eldomiaty et al., 2020), gold price (Kumar &; Robiyanto, 2021). The 
problem of this study is whether the volatility of individual stocks is influenced by the 
shares of competitors (BBCA and BMRI) and whether the share price (BRIS) is 
influenced by the share price of the majority owner of the company (BMRI). This study 
also examines whether fluctuations influence the volatility of these stocks (BBCA, 
BMRI, BRIS) in the stock index of the market (LQ45). Volatility modeling due to other 
stock volatility (contagion) effects in Indonesia is still relatively limited. Therefore, this 
research is essential to explain stock volatility better. 

 

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

400 

500 

600 

700 

800 

900 

1,000 

1,100 

1,200 

1,300 

15 16 17 18 19 20 21 22

BBCA BMRI LQ45

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

500 

600 

700 

800 

900 

1,000 

1,100 

1,200 

15 16 17 18 19 20 21 22

BMRI BRIS LQ45  
Figure 1. Price Fluctuations of BBCA, BMRI, BRIS, and LQ45 Index 2015-2022 
 

The contagion effect refers to the interdependence between market economies, 
such as macroeconomic similarities, trade relations, and loans from banks (Dornbusch 
et al., 2000; Reinhart et al., 2007). The term is often used to describe the adverse effects 
of certain events, such as financial crises, on other sectors or countries. The impact of 
the contagion effect is an event when a crisis occurs in one country, can have a negative 
impact on another country, and will result in a weakening of the economy (González-
Hermosillo et al., 2003). Forbes and Rigobon (2002) define the contagion effect as when 
an affected country triggers market movements in the region and substantially 
increases connectedness between countries.  

Asgharian & Liu (2022), based on text-based network industry classifications 
(TNIC) data, show that the contagion effect of competing companies dominates, and 
the impact caused by adverse return shocks is more significant. Li and Luo (2020), 
based on stock data on A-share Shanghai and Shenzhen in 2009-2017, found that the 
overall level of industry competition was negatively correlated with the risk of falling 
stock prices and the company's competitive position. However, the study's results also 
showed that the correlation was insignificant for companies with high competitiveness. 
Altintig et al. (2009), based on data on the cement industry in Turkey, show the impact 
of privatization increases efficiency but is bad news for its competitors. 

Studies on volatility prediction models in financial markets are still relatively 
limited. Volatility (σ) is a dispersion of the return of a particular security or market 
index that can be measured using the standard deviation or changes between the 
returns of the same security or its market index (Sahiner, 2022). According to Franses 
and McAleer (2002), stock market volatility models are needed to forecast stock market 
movements more accurately, even if there are shocks in the market. 

http://creativecommons.org/licenses/by-sa/4.0/
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Mandelbrot (1963) revealed that stock market volatility based on time series 
data shows volatility clustering as a phenomenon that can be modeled with 
econometric analysis models, including ARCH or GARCH. ARCH or Autoregressive 
Conditional Heteroscedastic (Engle, 1982), developed into GARCH or Generalized 
Autoregressive Conditional Heteroscedastic (Bollerslev, 1986), uses heteroscedasticity 
data to be modeled as a residual variance. ARCH treats the mean and variance models 
simultaneously. GARCH (1.1) is a commonly used model where residual variance is 
affected only by one previous period. Suppose the residual variance is affected by 
fluctuations in the square of the residue from some previous period and the residual 
variance from some previous period. In that case, the model becomes GARCH (p, q). 
Research on the use of the GARCH model for volatility analysis in Indonesia and 
Hungary during the pandemic is done by Setiawan et al., (2021), in the European 
market by Villar-Rubio et al. (2023), and banking stocks in Pakistan by Mohsin et al. 
(2020). 

This study used the Exponential Generalized Autoregressive Conditional 
Heteroscedasticity or EGARCH  model developed by Nelson (1991) based on the 
GARCH model (Bollerslev, 1986). Stock volatility analysis uses the beta value to 
measure a stock's price sensitivity to changes in its market price. Time series data 
allows analysis of the historical behavior of stock prices or the market as a whole. But. 
Time-series data has unstable price fluctuation patterns or experiences volatility 
clustering (Kim & Song, 2020). The EGARCH model does not limit model parameters 
and adds an element of asymmetry in the volatility response to price changes. 
EGARCH allows the modeling of asymmetric effects where conditions of equal 
magnitude increase or decrease in price can have different impacts (Ezzat, 2012). 
According to Villar-Rubio et al. (2023), EGARCH can be used to forecast future 
volatility so that better decisions are taken. Therefore, this study was conducted to test 
whether BBCA's share price volatility is influenced by BMRI's share price and LQ45 
Index and vice versa. The study also examines whether the volatility of BRIS share 
prices is influenced by the share price of its majority owner (BMRI) and the LQ45 
Index. 

 
METHOD 

The data used in this study were obtained from www.idx.co.id, 
www.investing.com, and www.yahoofinance.com. The data is returned as income that 
will be received if a certain amount of money is invested in financial assets. Stock 
return is the difference in stock price (Pi) in a period (t) with the previous period (t-1), 
which is calculated using the formula: Ri=[Pi-Pi(t-1)]/Pi(t-1) (Hudson & Gregoriou, 2015). 
The stocks to be studied are BBCA, BMRI, and BRIS in 2015-2022. The market return is 
the difference from the price listed on the composite index, which is calculated using 
the formula: Rmt=[Pmt-Pm(t-1)]/Pm(t-1) (Hudson & Gregoriou, 2015) where Rmt is the 
market return of LQ45 index. Pmt and Pm(t-1) are the closing indices of LQ45 in period (t) 
with the previous period (t-1).  

Before the model analysis, a stationary test was carried out with a root test unit. 
Based on the Augmented Dickey-Fuller (ADF) test value, the criteria used are =0, 
meaning the data is not stationary, and ≠0, meaning the data is stationary, where =0 
is accepted if probability>0.05 and vice versa. Data is not stationary if the variance is 
not constant. After the stationary data, the return will be described first with the 
ARMA (Autoregressive-Moving-Average) model to determine the estimated 
parameters for the EGARCH model. The ARMA model was introduced by Peter 
Whittle (1951) and published by George EP Box and Gwilym Jenkins in 1970 (Box, 

http://www.yahoofinance.com/
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2013). This ARMA test is carried out to determine the capabilities and feasibility of the 
model. The GARCH model is used if the data show an effect of heteroscedasticity. The 
effect of heteroscedasticity can be seen based on the results of the ARCH-LM test. The 
effect of heteroscedasticity on ARMA is used as a basis for conducting GARCH 
modeling. 

Stock return volatility is measured by the EGARCH model equation with 
conditional mean and conditional variance. The volatility return model with the 
EGARCH model equation with the conditional mean is: 
YBBCA=β0+β1RBMRI+β2RLQ45+et …………………………………………………….(Equation 1) 
YBMRI=β0+β1RBBCA+β2RLQ45+et …………………………………………………….(Equation 2) 
YBRIS=β0+β1RBMRI+β2RLQ45+et ……………………………………………………...(Equation 3) 
 
Model analysis using the EGARCH model (p,q) with an alpha value of 5%. While the 
EGARCH model (Nelson, 1991) with conditional variance to show the residual variety 
(σ2t) is influenced by the residual square of the previous period (|(µt-1)/( t-1)|-(µt-1)/( t-

1) and residual variance of last periods (σ2t-q) is: 
ln(σ2t)=C6+C7|(µt-1)/( t-1)|-C8(µt-1)/( t-1)+C9 ln(σ2t-1) .........................................(Equation 4) 

 
RESULT AND DISCUSSION 

The results of the descriptive analysis describe the time-series data characteristics 
of daily stock returns during the study period. The characteristics of the data 
described, including mean, median, maximum, minimum, and standard deviation, are 
presented in Table 1. The data shows average returns on BBCA(RBBCA), BMRI(RBMRI), 
BRIS (RBRIS) and LQ45(RLQ45) of 0.09 percent, 0.07 percent, and 0.02 percent with 
standard deviations of 1.62 percent, 2.24 percent, and 1.41 percent. The kurtosis value 
of the data has a high level of sharpness (>3) or leptokurtic (abnormal curve). 
Table 1. Descriptive Statistics  

 
N Mean Median Max. Min. 

Std. 
Dev. 

Skewness Kurtosis 

RBBCA 1590 0.0009 0.0012 0.1733 (0.0791) 0.0162 0.7477 13.24 
RBMRI 1590 0.0007 0.0021 0.1580 (0.1299) 0.0224 0.2062 6.83 
RBRIS 877 0.0016 (0.0065) 0.2500 (0.1440) 0.0423 2.5983 15.19 
RLQ45 1590 0.0002 0.0003 0.1492 (0.0826) 0.0141 0.4464 14.14 

Source: Data processed 

The results of the unit root test (Table 2) show that all data used to measure the 
research variable had significant p-values (<0.05) at the level, and BBCA shares were 
differentiated one (1st difference). Based on the test, it produces all stationary data and 
has no root unit. 
Table 2. Stationarity Test 

 ADF Test p-values 

RBBCA (18.0623) 0.0000 
RBMRI (30.4254) 0.0000 
RBRIS (26.3574) 0.0000 
RLQ45 (29.8242) 0.0000 

Source: Data processed  
Note:  This unit root test examines whether these variables have unit roots using 
Augmented Dickey-Fuller (ADF). The test for each variable contains t-statistics, 
according to MacKinnon (1996). All variables are significant at 1%, 5%, and 10% and 
indicate stationary processes.  

http://creativecommons.org/licenses/by-sa/4.0/
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ARMA Model 
Furthermore, parameter estimation is determined based on the ARMA, and the 

best model is selected based on the smallest Akaike Information Criteria (AIC) (Gujarati 
& Porter, 2009). Parameters are diagnosed based on probability values that are more 
excellent than the significant level (0.05). In addition, heteroscedasticity's problem is 
identifying residual test results with probability values (α<0.05). The autoregressive 
model (AR) specifies that the output variable depends linearly on its previous value. 
At the same time, the moving average (MA) indicates that the estimated residual is a 
linear combination of the respective residues of the past. Estimation of EGARCH 
parameters in the overall data shows that ARMA (1,1) has significant AR (1) and MA 
(1) with the smallest AIC in the equation. 
Table 3. Stationarity Test 

Model AR MA SIC AIC R2Adj ARCH 

ARMA (1,1) 0.0000 0.0000 -6.204340 -6.224548 0.559504 0.0000 

ARMA (12) 0.0000 0.0012 -6.194858 -6.215066 0.555280 0.0000 

ARMA (22) 0.1410 0.0000 -6.194552 -6.214759 0.555143 0.0000 

ARMA (21) 0.0000 0.0000 -6.167602 -6.187810 0.542988 0.0000 

ARMA (31) 0.0000 0.1045 -6.191737 -6.211945 0.553888 0.0000 

Source: Data processed 

 
Table 4 illustrates RBBCA values as dependent variables and RBMRI and RLQ45 as 

independent variables measured using EGARCH (1,1), with data distribution 
variations as Normal, Student' s-t, and Generalized Error Distribution/GED at various 
Log-likelihood, AIC, and ARC values. 
Table 4. BBCA Return Volatility Model Using EGARCH (1.1) 

   EGARCH    

Normal ρ-value Student’s-t ρ-value GED ρ-value 

C    (0.0001)   0.4197        (0.0001)     0.0379     (0.0001)     0.0457  
RBMRI     (0.0032)   0.1290       (0.0008)     0.7143    (0.0025)    0.2290  
RLQ45        0.0100  0.0590        0.0075  0.1541      0.0094  0.2290 
Log-likelihood     4,482.91       4,548.88    4,541.33   
AIC     (5.6134)      (5.6950)     (5.6855)  
ARCH    0.0337      0.4608       0.1728  
C6     (0.7003) 0.0000     (0.7504) 0.0000      0.6773) 0.0000 
C7       0.2241  0.0000       0.3053  0.0000     0.2525  0.0000 
C8    (0.0844) 0.0000     (0.0746)     0.0046     (0.0730)     0.0022  
C9       0.9366  0.0000       0.9368  0.0000      0.9419  0.0000 
TDist/GED  0.0000       4.5208  0.0000      1.2371  0.0000 

 Source: Data processed 
 

The best model has the smallest AIC value (-5.6950), is free of symptoms of 
heteroscedasticity (ARCH>0.05), and has a significant variance equation (C6<0.05) in 
Students. The parameter estimation results of the EGARCH parameter (1.1) with 
Student show that the volatility of the BMRI stock or the LQ45 index does not 
significantly influence the volatility of BBCA shares. The best model is EGARCH (1,1) 
where the Student's-t distribution (Equations 1 and 4) is: 
RBBCA=-0.0001-0.0008 RBMRI+0.0075 RLQ45+e ……………………………………(Equation 5) 
ln(σ2t)=-0.7504+0.3053|(µt-1)/( t-1)|-0.0746(µt-1)/( t-1)+0.9368ln(σ2t-1) ............(Equation 6) 
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Figure 2. BBCA Conditional Variance 
Source: Data processed. 
Note: Figure 2 shows the conditional variance of RBBCA affected by the previous day's 
return at a significance level of 5%. 

 
Table 5 illustrates RBMRI values as dependent variables, RBBCA and RLQ45  as 

independent variable measurements using EGARCH (1,1) with variations in data 
distribution are Normal, Student's-t, and Generalized Error Distribution/GED at 
various Log-likelihood, AIC, and ARCH values. 
Table 5. BMRI Return Volatility Model Using EGARCH (1.1)  

   EGARCH    

Normal ρ-value Student’s-t ρ-value GED ρ-value 

C      0.0006    0.0410           0.0004      0.1148       0.0003      0.1519  
RBBCA     (0.0078)  0.6082      (0.0057)     0.7218     (0.0035)    0.8217  
RLQ45        1.2357   0.0000           1.1988  0.0000        1.2069  0.0000       
Log-likelihood    4,543.44      4,613.38    4,594.74   
AIC    (5.6894)       (5.7759)    (5.7525)  
ARCH    0.3903      0.2750      0.2848  
C6     (0.7822) 0.0000        (0.3504)    0.0120      (0.4692)    0.0068  
C7       0.1122  0.0000        0.0679     0.0053      0.0790     0.0005  
C8     (0.0351)  0.0126     (0.0317)    0.0398     (0.0318)   0.0662  
C9       0.9182  0.0000         0.9650  0.0000        0.9520  0.0000    
TDist/GED         5.9018  0.0000        1.3206  0.0000    

  Source: Data processed 
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Figure 3. BMRI Conditional Variance 
Source: Data processed.  
Note: Figure 3 shows the RBMRI conditional variance for 2015-2022 affected by the 
previous day's return at a significance level of 5%. 
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Table 5 shows that EGARCH(1.1) Student's-t is the best model (AIC-5.7759) and 
free of heteroscedasticity (ARCH>0.05). The BMRI stock volatility model shows that 
the effect of BBCA share price volatility is insignificant, but the LQ45 stock index is 
significant. The model variance value shows a significant value (<0.05). It means 
residual variance is affected by residual square fluctuations from some previous 
periods and residual variance from some previous periods. The formulation of the 
EGARCH variance model is ln(σ2t), with the expected result as a1<0 and significant. 
The calculation of the table shows that the EGARCH coefficient is C6 with a negative 
value with a significant p-value = 0.0000. The best model is EGARCH (1,1) where the 
Student's-t distribution (Equations 2 and 4) is: 
RBMRI=0.0004-0.0057 RBBCA+1.1988 RLQ45+e ..........................................................(Equation 7) 
ln(σ2t)=-0.3504+0.0679|(µt-1)/( t-1)|-0.0317(µt-1)/( t-1)+0.9650ln(σ2t-1) .............(Equation 8) 

 
Table 6. BRIS Return Volatility Model Using EGARCH (1.1) 

   EGARCH    

Normal ρ-value Student’s-t ρ-value GED ρ-value 

C    (0.0116)  0.3243        (0.0039) 0.0000   (0.0048) 0.0000 
RBMRI     (0.0659)   0.1105         0.0073  0.8524     0.0360  0.2301 
RLQ45       0.8684  0.0000        0.7803     0.0000     0.8521  0.0000   
Log-likelihood    1,723.70       1,978.81    1,947.35   
AIC    (3.9238)      (4.5053)     (4.4333)  
ARCH     0.9542     0.6249   0.8256  
C6     (1.3486) 0.0000      (1.0325) 0.0000   (1.3512) 0.0000 
C7       0.6644  0.0000       0.7659     0.0011      0.5193  0.0000 
C8    (0.1136)  0.0003     (0.2762)    0.0304    (0.1360)    0.0782  
C9      0.8610  0.0000       0.8874  0.0000     0.8512  0.0000 
TDist/GED          2.3113  0.0000  0.7690  0.0000 

  Source: Data processed 
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Figure 4. BRIS Conditional Variance 
Source: Data processed.  
Note: Figure 4 shows the RBRIS conditional variance for 2015-2022 affected by the 
previous day's return at a significance level of 5%.  
 

Table 6 shows that EGARCH (1.1) Student's-t is the best model (AIC-4.5053) and 
free of heteroscedasticity (ARCH>0.05). The BRIS stock volatility model shows that the 
effect of the volatility of the majority owner's share price (BMRI) is not significant, but 
the LQ45 stock index is significant. The model variance value shows a significant value 
(<0.05). It means residual variance is affected by residual square fluctuations from 
some previous periods and residual variance from some previous periods. The 
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formulation of the EGARCH variance model is ln(σ2t), with the expected result being 
a1<0 and significant. The calculation of the table shows that the EGARCH coefficient is 
C6 with a negative value with a significant p-value = 0.0000. The best model is 
EGARCH (1,1) where the Student's-t distribution (Equations 3 and 4) is: 
RBRIS=-0.0039+0.0073RBMRI+0.7803RLQ45+e ...........................................................(Equation 9) 
ln(σ2t)=-1.0325+0.7659|(µt-1)/( t-1)|-0.2762(µt-1)/( t-1)+0.8874ln(σ2t-1) ...........(Equation 10) 
The volatility model shows that the EGARCH with the Student' s-t distribution type is 
the best model for future testing in bearish and bullish market conditions. 
Table 7. BBCA, BMRI, and BRIS Stock Return Volatility Model During a Bearish 
Market 

   EGARCH   

BBCA ρ-value BMRI ρ-value BRIS ρ-value 

C     0.0005    0.2892           0.0011      0.0673     (0.0094) 0.0000 
RBMRI   (0.0305)   0.2260        0.1653      0.0002  
RBBCA       (0.0402)     0.1023    
RLQ45      0.8352  0.0000          1.2826  0.0000   (0.0045)    0.9261  
Log-likelihood   2,449.82       2,275.36     1,013.73   
AIC    (6.3126)     (5.8688)    (4.4910)  
ARCH     0.8041       0.8650      0.7703  
C6      (0.7307)   0.0428      (1.5322)     0.1116    (0.6699)    0.0045  
C7      0.0996    0.0402        0.1682     0.0205       2.1018     0.4442  
C8    (0.0201)   0.5128     (0.0026)    0.9465     (0.7858)    0.4718  
C9      0.9281  0.0000          0.8389  0.0000      0.9046  0.0000 
TDist/GED      1.3874  0.0000          9.7431      0.0001       2.0249  0.0000 

  Source: Data processed with EViews 12. The BBCA volatility test uses the EGARCH 
(1.1) GED model because it has the smallest AIC, while BMRI and BRIS have the 
EGARCH (1.1) Student's model. 
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Figure 5. Bearish Conditional Variance  
Source: Data processed using EViews 12. 

 
Table 7 illustrates the value of the research variable when the market is down 

(bearish, RLQ45<0) to test BBCA, BMRI, and BRIS return volatility models. The model 
showed data accessible of heteroscedasticity (ARCH>0.05) and had a significant 
variance equation (C6<0.05). The model variance value shows a significant value 
(<0.05). It means residual variance is affected by residual square fluctuations from 
some previous periods and residual variance from some previous periods. Based on 
the parameter estimates, BMRI shares do not significantly influence the volatility of 
BBCA stock returns. However, the LQ45 index is significant when it is bearish. The 
volatility of BMRI shares is not significantly affected by BBCA shares, but the LQ 45 
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index is significant when it is bearish. While BMRI shares significantly influence the 
volatility of BRIS stocks, the LQ45 index is not significant when bearish. 
Table 8. BBCA, BMRI, BRIS Stock Return Volatility Model During a Bullish Market 

   EGARCH    

BBCA ρ-value BMRI ρ-value BRIS ρ-value 

C     (0.0037) 0.0000          0.0001      0.8370     (0.0037)    0.0000    
RBMRI        0.0240    0.3789       (0.0070)    0.8612  
RBBCA         0.0020      0.9347    
RLQ45        0.4807  0.0000        1.1880  0.0000      0.8211  0.0000    
Log-likelihood     2,141.05       2,290.38     1,972.58   
AIC     (5.2749)       (5.6445)    (4.5065)  
ARCH     0.5062       0.8065      0.6188  
C6     (5.9823) 0.0000     (0.2394)     0.2091      (1.0311) 0.0000    
C7       0.8763  0.0000      0.0636     0.0597       0.7062     0.0001  
C8       0.0834    0.2611      (0.0435)     0.0411     (0.2615)    0.0146  
C9       0.3452    0.0006        0.9770  0.0000      0.8900  0.0000    
TDist/GED       8.0449    0.0003        5.0908  0.0000      2.3781  0.0000    

Source: Data processed with EViews 12. Test the volatility of all three stocks using the 
EGARCH (1.1)  
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Figure 6. Bullish Conditional Variance 
Source: Data processed. 

 
Table 8 illustrates the value of the research variable when the market is bullish 

(RLQ45>0) to test the return volatility models of the third stocks. The best model is 
shown by the smallest AIC value, free of heteroscedasticity (ARCH>0.05) and having a 
significant variance equation (C6<0.05). It means residual variance is affected by 
residual square fluctuations from some previous periods and residual variance from 
some previous periods. Based on the results of parameter estimates, BMRI shares do 
not significantly influence the volatility of BBCA stock returns. However, the LQ45 
index is significant when bullish. The volatility of BMRI shares is not significantly 
affected by BBCA shares, but the LQ 45 index is significant when bullish. While BMRI 
shares do not significantly influence the volatility of BRIS stocks, the effect of the LQ 45 
index is significant.  

Volatility clustering on the three stocks and large kurtosis values indicates the 
heteroscedasticity problem (abnormally distributed data) that occurs in BBCA, BMRI, 
and BRIS. Heteroscedasticity in time series financial data results is under the 
assumption of constant error variants not being met (Ogata, 2012; Stojanovski, 2015; 
Rice et al., 2020). It impacts false analysis results in parameter estimation in statistical 
models (spurious regression) and results in biased conclusions (Gujarati & Porter, 2009; 
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Lauridsena & Kosfeld, 2011; Farbmacher & Kögel, 2017). Tanjung (2015) also shows 
that stock return data in the Jakarta Islamic Index (JII) is not normally distributed or 
experiencing heteroscedasticity. The results of the study by Novanti et al. (2020) prove 
that the return on banking stocks, including BMRI and BBCA, is heteroscedasticity. 
Therefore, volatility modeling using the EGARCH(1.1) model with the Student's 
distribution shows a better ability to describe stock volatility. It aligns with the 
research of Mohsin et al. (2022) and Villar-Rubio et al. (2023).  

The returns volatility of BBCA and BMRI does not significantly affect each other, 
but both indices are significantly affected by the market return (LQ45 index), both 
bearish and bullish. Meanwhile, the volatility of BRIS stock returns is significantly 
influenced by BMRI shares only when bearish and the LQ45 index when bullish. 
Rumors of the merger of BRI Syariah, Bank Syariah Mandiri, and BNI Syariah in 2018 
could ignore the influence of market volatility. BBCA and BMRI represent the most 
prominent banks with solid fundamentals and good performance, so they are routinely 
included in LQ45. As part of blue-chip stocks, they are generally owned by 
institutional and long-term investors who trade information-based (informed trading). 
Investors tend to be rational with enough time to gather information and move 
independently of each other. In behavioral finance, investors of both stocks (BMRI and 
BBCA) do not imitate each other in making investment decisions, unaffected by the 
increase/decrease in the share price of both. However, both stock investors (BMRI and 
BBCA) are indicated to follow market volatility, which is reflected in the significance of 
the influence of market returns (LQ45) both when investors are pessimistic (bearish) 
and optimistic (bullish). Investors of both stocks tend to adjust their behavior to the 
majority sentiment. Therefore, further research is possible to test the individual 
herding behavior of these banking stocks. 
 
CONCLUSION 

The EGARCH(1.1) model with a type distribution model can be used in 
forecasting stock volatility. The results of comparing the three models show almost the 
same ability in modeling to find the effect of index volatility. Based on the assessment 
of residual error or variance and AIC, it was found that the EGARCH(1,1) Student gave 
better results than the normal distribution or GED. Analysis of the EGARCH model is 
needed to overcome the abnormalities in the distribution of time series financial data. 
The theoretical implication of this study is that a stock's price volatility is influenced by 
investor sentiment in general, which is reflected in market volatility (stock index) 
during bullish and bearish markets. The practical implication of this research is that the 
importance of market volatility analysis can be used to determine the suitable 
investment (portfolio) strategy for investors and to reduce volatility risk. 
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