The Effect Of Annealing Temperature On The Properties Of Thin Zno Films Deposited Using Microwave-Assisted Spray Pyrolysis System

Nafiusokhib Nafiusokhib, Putut Marwoto, Sulhadi Sulhadi, Budi Astuti, Sugianto Sugianto, Teguh Darsono, Siti Wahyuni, Alvin Fachrully Septiano

Abstract


This research aims to determine the optimal annealing temperature for the production of ZnO thin films using the microwave-assisted spray pyrolysis method. In the ZnO growth process, a high microwave temperature was used, with a spray pressure of 20 kg/m2, a nozzle distance of 12 cm, 3 layers, a spray duration of 5 seconds, and a 1-minute interval between layers. Annealing temperature variations included 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, and 600°C. SEM results indicated that the best morphology was achieved at 400°C, with the smoothest and least cracked surface. EDX results showed the highest ZnO composition percentage at 450°C, which was 93.61%.The optical properties obtained from UV-Vis spectroscopy revealed the lowest absorption in the visible light wavelength range (400-700 nm) at an annealing temperature of 450°C. Furthermore, the highest transmittance and the lowest bandgap were observed at an annealing temperature of 450°C, measuring 90.77% and 3.00 eV, respectively. Crystal property analysis from XRD data revealed that all samples had a hexagonal wurtzite structure. The best crystal index was achieved at 450°C, with a value of 81.899%. Increasing the annealing temperature improved the crystal properties, as evidenced by a decreasing full width half maximum (FWHM) until 450°C, which was 0.476°.


Keywords


Annealing; Thin film; Microwave-assisted spray pyrolysis; ZnO

References


Abidah, N. (2022). Studi Struktur Dan Sifat Optik Film Tipis Zinx Oxide Doping Ganda Titanium dan Copper Dengan Metode Spin Coating.

Afre, R. A., Sharma, N., Sharon, M., & Sharon, M. (2018). Transparent conducting oxide films for various applications: A review. Reviews on Advanced Materials Science, 53(1), 79–89. https://doi.org/10.1515/rams-2018-0006

Anitha, M., Saravanakumar, K., Anitha, N., Kulandaisamy, I., & Amalraj, L. (2019). Influence of annealing temperature on physical properties of Sn-doped CdO thin films by nebulized spray pyrolysis technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 243(April 2018), 54–64. https://doi.org/10.1016/j.mseb.2019.03.018

Aryanto, D., Hastuti, E., Taspika, M., Anam, K., Isnaeni, I., Widayatno, W. B., Wismogroho, A. S., Marwoto, P., Nuryadin, B. W., Noviyanto, A., & Sugianto, S. (2020). Characteristics and photocatalytic activity of highly c-axis-oriented ZnO thin films. Journal of Sol-Gel Science and Technology, 96(1), 226–235. https://doi.org/10.1007/s10971-020-05361-5

Ashok, A., Regmi, G., Romero-Núñez, A., Solis-López, M., Velumani, S., & Castaneda, H. (2020). Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications. Journal of Materials Science: Materials in Electronics, 31(10), 7499–7518. https://doi.org/10.1007/s10854-020-03024-3

Astuti, B., Zhafirah, A., Carieta, V. A., Hamid, N., Marwoto, P., Sugianto, Nurbaiti, U., Ratnasari, F. D., Putra, N. M. D., & Aryanto, D. (2020). X-ray diffraction studies of ZnO:Cu thin films prepared using sol-gel method. Journal of Physics: Conference Series, 1567(2). https://doi.org/10.1088/1742-6596/1567/2/022004

Celarel, A., Tuta, C., & Ioan, G. V. (2018). Study of the optical band gap energy associated to optical materials exposed to low doses of gamma-rays. Romanian Journal of Physics, 63(9–10).

Chaitra, U., Kekuda, D., & Mohan Rao, K. (2017). Effect of annealing temperature on the evolution of structural, microstructural, and optical properties of spin coated ZnO thin films. Ceramics International, 43(9), 7115–7122. https://doi.org/10.1016/j.ceramint.2017.02.144

Darsono, T., Muqoyyanah, M., Sulhadi, S., Wahyuni, S., Marwoto, P., & Sugianto, S. (2021). Effect of Post-Annealing Treatment on the Morphological and Optical Properties of ZnO Thin Film Fabricated by Spraying Deposition Method. Indonesian Journal of Applied Physics, 11(1), 113. https://doi.org/10.13057/ijap.v11i1.46927

Espitia, P. J. P., Otoni, C. G., & Soares, N. F. F. (2016). Zinc Oxide Nanoparticles for Food Packaging Applications. In Antimicrobial Food Packaging. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800723-5.00034-6

Gadallah, A. S., & El-Nahass, M. M. (2013). Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating. Advances in Condensed Matter Physics, 2013. https://doi.org/10.1155/2013/234546

Hadi, S., Marwoto, P., Made, N., Fisika, D. P. J., Matematika, F., Ilmu, D., & Alam, P. (2013). Unnes Physics Journal Deposisi Dan Karakterisasi Film Tipis Cds/Cdte:Cu Yang Ditumbuhkan Dengan Metode Dc Magnetron Sputtering. Upj, 2(1), 44–50. http://journal.unnes.ac.id/sju/index.php/upj

Hardani, H., Hendra, H., Darmawan, M. I., Cari, C., & Supriyanto, A. (2016). Pengaruh Konsentrasi Ruthenium (N719) sebagai Fotosensitizer dalam Dye-Sensitized Solar Cells (DSSC) Transparan. Jurnal Fisika Dan Aplikasinya, 12(3), 104. https://doi.org/10.12962/j24604682.v12i3.1340

Iwantono, I., Anggelina, F., Nurrahmawati, P., Naumar, F. Y., & Umar, A. A. (2016). Optimalisasi Efisiensi Dye Sensitized Solar Cells Dengan Penambahan Doping Logam Aluminium Pada Material Aktif Nanorod Zno Menggunakan Metode Hidrotermal. Jurnal Material Dan Energi Indonesia, 06(01), 36–43.

Jun, M. C., Park, S. U., & Koh, J. H. (2012). Comparative studies of Al-doped ZnO and Gadoped ZnO transparent conducting oxide thin films. Nanoscale Research Letters, 7, 1–6. https://doi.org/10.1186/1556-276X-7-639

Kasirajan, K., Radhi Devi, K., Rajini, M., & Karunakaran, M. (2022). Structural, Morphological and Optical Properties of Perfume Atomizer Spray Pyrolysis CdO Thin Films: Effect of Solution Volume. Recent Perspectives in Pyrolysis Research, 1–14. https://doi.org/10.5772/intechopen.99906

Kurtaran, S. (2021). Al doped ZnO thin films obtained by spray pyrolysis technique: Influence of different annealing time. Optical Materials, 114(February), 20–25. https://doi.org/10.1016/j.optmat.2021.110908

Lim, W. Q., Sim, L. K., Fazrina, N., & Maryam, W. (2017). Effect of post annealing temperature on photonic bandgap of ZnO nanorods grown by chemical bath deposition. AIP Conference Proceedings, 1838, 10–15. https://doi.org/10.1063/1.4982174

Lin, K. H., Enomae, T., & Chang, F. C. (2019). Cellulose Nanocrystal Isolation from Hardwood Pulp using Various Hydrolysis Conditions. Molecules, 24(20), 3–5. https://doi.org/10.3390/molecules24203724

López-Suárez, A., Acosta, D., Magaña, C., & Hernández, F. (2020). Optical, structural and electrical properties of ZnO thin films doped with Mn. Journal of Materials Science: Materials in Electronics, 31(10), 7389–7397. https://doi.org/10.1007/s10854-019-02830-8

Loureiro, J., Neves, N., Barros, R., Mateus, T., Santos, R., Filonovich, S., Reparaz, S., Sotomayor-Torres, C. M., Wyczisk, F., Divay, L., Martins, R., & Ferreira, I. (2014). Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties. Journal of Materials Chemistry A, 2(18), 6649–6655. https://doi.org/10.1039/c3ta15052f

Mahmudah, S. N. (2016). Pengaruh Tekanan Oksigen pada Proses Annealing Film Tipis Zinc Oksida (ZnO) Doping Aluminium (Al). In Universitas Negeri Semarang. Universitas Negeri Semarang.

Marwoto, P., Khanifah, L., Sulhadi, Sugianto, Astuti, B., & Wibowo, E. (2019). Influence of annealing time on the morphology and oxygen content of ZnO:Ga thin films. Journal of Physics: Conference Series, 1321(2). https://doi.org/10.1088/1742-6596/1321/2/022020

Mehmood, B., Khan, M. I., Iqbal, M., Mahmood, A., & Al-Masry, W. (2021). Structural and optical properties of Ti and Cu co-doped ZnO thin films for photovoltaic applications of dye sensitized solar cells. International Journal of Energy Research, 45(2), 2445–2459. https://doi.org/10.1002/er.5939

Muchuweni, E., Sathiaraj, T. S., & Nyakotyo, H. (2016). Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceramics International, 42(8), 10066–10070. https://doi.org/10.1016/j.ceramint.2016.03.110

Nafisah, H. C. (2022). Pengembangan Sistem Microwave Assisted Spray Pyrolisis Deposition Untuk Deposisi Material Film Tipis Zinc Oxide. Universitas Negeri Semarang.

Ponja, S. D., Sathasivam, S., Parkin, I. P., & Carmalt, C. J. (2020). Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Scientific Reports, 10(1), 1–7. https://doi.org/10.1038/s41598-020-57532-7

Rashid, A. R. A., Hazwani, T. N., Mukhtar, W. M., & Taib, N. A. M. (2018). Influence of annealing temperature on optical properties of Al doped ZnO nanoparticles via sol-gel methods. AIP Conference Proceedings, 1972(June). https://doi.org/10.1063/1.5041227

Reeja-Jayan, B., Harrison, K. L., Yang, K., Wang, C. L., Yilmaz, A. E., & Manthiram, A. (2012). Microwave-assisted low-temperature growth of thin films in solution. Scientific Reports, 2, 1–8. https://doi.org/10.1038/srep01003

Rinaldi, R., Amri, A., Jurusan Teknik Kimia, M., & Jurusan Teknik Kimia, D. (2016). Sintesa Fluorinated Tin Oxide (FTO) Menggunakan Prekursor Ramah Lingkungan dan Penambahan Graphene dengan Metode Deposisi Spray Coating Untuk Aplikasi Material Konduktif Transparan. In Jom FTEKNIK.

Rustandi, A., Anrokhi, M. S., Nuryantini, A. Y., Iskandar, F., Abdullah, M., & Khairurrijal. (2012). Sintesis Komposit Nanokristalin α -Fe 2 O 3 / Zeolit Alam Dengan Metode Spray Pyrolysis. 3–6.

Saha, J. K., Bukke, R. N., Mude, N. N., & Jang, J. (2020). Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-65938-6

Samad, N. A. A., Lai, C. W., & Johan, M. R. (2020). Chemical studies of metal oxide powders. In Metal Oxide Powder Technologies. INC. https://doi.org/10.1016/b978-0-12-817505-7.00002-6

Sinaga, P. (2015). Pengaruh Temperatur Annealing Terhadap Struktur Mikro, Sifat Listrik Dan Sifat Optik Dari Film Tipis Oksida Konduktif Transparan Zno:Al Yang Dibuat Dengan Teknik Screen Printing. Jurnal Pengajaran Matematika Dan Ilmu Pengetahuan Alam, 14(2), 1–9. https://doi.org/10.18269/jpmipa.v14i2.301

Sugianto, Zannah, R., Mahmudah, S., Astuti, B., Putra, N., Wibowo, A., Marwoto, P., Ariyanto, D., & Wibowo, E. (2016). Pengaruh Temperatur Annealing Pada Sifat Listrik Film Tipis Zinc Oksida Doping Aluminium Oksida. Jurnal MIPA, 39(2), 115–122. http://journal.unnes.ac.id/nju/index.php/JM

Sulhadi, Fatiatun, Marwoto, P., Sugianto, & Wibowo, E. (2015). Variasi suhu Deposisi paDa struktur, sifat optik Dan Listrik fiLm tipis seng oksiDa Dengan Doping gaLium (Zno:ga). Jurnal Pendidikan Fisika Indonesia, 11(1), 93–99. https://doi.org/10.15294/jpfi.v11i1.4007

Sulhadi, Muqoyyanah, Darsono, T., Wahyuni, S., Sugianto, & Marwoto, P. (2021). Optical properties of zinc oxide thin film fabricated by spraying deposition method. Journal of Physics: Conference Series, 1918(2), 8–12. https://doi.org/10.1088/1742-6596/1918/2/022002

Tian, T., Cheng, L., Zheng, L., Xing, J., Gu, H., Bernik, S., Zeng, H., Ruan, W., Zhao, K., & Li, G. (2016). Defect engineering for a markedly increased electrical conductivity and power factor in doped ZnO ceramic. Acta Materialia, 119, 136–144. https://doi.org/10.1016/j.actamat.2016.08.026

Vittal, R., & Ho, K. C. (2017). Zinc oxide based dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 70(December 2016), 920–935. https://doi.org/10.1016/j.rser.2016.11.273

Wang, Z. B., Helander, M. G., & Lu, Z. H. (2013). Transparent conducting thin films for OLEDs. Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications, 49–76. https://doi.org/10.1533/9780857098948.1.49

Wypych, G. (2015). Principles of Uv Degradation. PVC Degradation and Stabilization, 167–203. https://doi.org/10.1016/b978-1-895198-85-0.50007-8

Yousaf, S., Ahmad, I., Kanwal, M., Alshahrani, T., Alhashim, H. H., Kattan, N. A., Tahir Farid, H. M., Riaz, A., Mehran, T., & Laref, A. (2021). Structural and electrical properties of Ba-substituted spinel ferrites. Materials Science in Semiconductor Processing, 122(September 2020), 105488. https://doi.org/10.1016/j.mssp.2020.105488

Zhang, L., Lan, J., Yang, J., Guo, S., Peng, J., Zhang, L., Tian, S., Ju, S., & Xie, W. (2017). Study on the physical properties of indium tin oxide thin films deposited by microwave-assisted spray pyrolysis. Journal of Alloys and Compounds, 728, 1338–1345. https://doi.org/10.1016/j.jallcom.2017.09.024

Zheng, Q., Li, Z., Yang, J., & Kim, J. K. (2014). Graphene oxide-based transparent conductive films. Progress in Materials Science, 64, 200–247. https://doi.org/10.1016/j.pmatsci.2014.03.004

Zhou, N., Buchholz, D. B., Zhu, G., Yu, X., Lin, H., Facchetti, A., Marks, T. J., & Chang, R. P. H. (2014). Ultrafl exible Polymer Solar Cells Using Amorphous Zinc − Indium − Tin Oxide Transparent Electrodes. 1098–1104. https://doi.org/10.1002/adma.201302303


Article Metrics

Abstract has been read : 66 times


DOI: http://doi.org/10.25273/jpfk.v10i1.19813

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Jurnal Pendidikan Fisika dan Keilmuan (JPFK) Indexed by :

 

Office:
Universitas PGRI Madiun
Jl. Setiabudi No. 85 Kota Madiun 63118
Lt 2 Office Physics Education
email : jpfk@unipma.ac.id


Copyright Jurnal Pendidikan Fisika dan Keilmuan (JPFKISSN 2442-8868 (printed) , ISSN  2442-904X (online)
real
time web analyticsView My Stat