Photocatalytic activity of MgFe2O4:TiO2 composite for degrading methylene blue
DOI:
https://doi.org/10.25273/jpfk.v8i1.13510Keywords:
Degradation, photon energy, composite, cubic, solar irradiationAbstract
Downloads
References
Aliah, H., Aji, M., Masturi, M., Sustini, E., Budiman, M., & Abdullah, M. (2012). TiO2 Nanoparticles-Coated Polypropylene Copolymer as Photocatalyst on Methylene Blue Photodegradation under Solar Exposure. American Journal of Environmetal Sciences, 8(3), 280–290.
Aliah, H., & Karlina, Y. (2015). Semikonduktor TiO2 Sebagai Material Fotokatalis Berulang. Jurusan FIsika UIN SGD Bandung, IX(1), 185–203.
Aliah, H., Setiawan, A., & Abdullah, M. (2013). Pengaruh Jumlah Lapisan Bulir Polimer Polipropilena Berfotokatalis Semikonduktor TiO2 Terhadap Fotodegradasi Metilen Biru. Prosiding Semirata FMIPA Universitas Lampung, 479–483.
Becker, A., Kirchberg, K., & Marschall, R. (2020). Magnesium Ferrite (MgFe2O4) Nanoparticles for Photocatalytic Antibiotics Degradation. Zeitschrift Fur Physikalische Chemie, 234(4), 645–654. https://doi.org/10.1515/zpch-2019-1430
Ben’ko, E. M., Mamleeva, N. A., & Kharlanov, A. N. (2021). Effect of Ozonation of Lignocellulosic Materials on Sorption of Cationic Dye. Russian Journal of Physical Chemistry A, 95(8), 1698–1704. https://doi.org/10.1134/S0036024421080069
Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Research Letters, 12(1), 1–10. https://doi.org/10.1186/s11671-017-1904-4
Cheng, Y., Xiong, M., Chen, M., & Deng, S. (2021). Ultra-broadband perfect solar energy absorber based on tungsten ring arrays Ultra-broadband perfect solar energy absorber based on tungsten ring arrays. Engineeirng Research Express, 3, 045020.
Demissie, H., An, G., Jiao, R., Ma, G., Liu, L., Sun, H., & Wang, D. (2021). Removal of phenolic contaminants from water by in situ coated surfactant on Keggin-aluminum nanocluster and biodegradation. Chemosphere, 269, 128692. https://doi.org/10.1016/j.chemosphere.2020.128692
Heidari, P., & Masoudpanah, S. M. (2020). Structural and magnetic properties of MgFe2O4 powders synthesized by solution combustion method: The effect of fuel type. Journal of Materials Research and Technology, 9(3), 4469–4475. https://doi.org/10.1016/j.jmrt.2020.02.073
Hitam, C. N. C., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258, 110050. https://doi.org/10.1016/j.jenvman.2019.110050
Jarariya, R. (2022). A Review Based on Spinel Ferrite Nanomaterials-MgFe2O4- Synthesis of Photocatalytic Dye Degradation in Visible Light Response. Journal of Environmental Treatment Techniques.10(2), 149–156.
Joseph, C. G., Taufiq-Yap, Y. H., Letshmanan, E., & Vijayan, V. (2022). Heterogeneous Photocatalytic Chlorination of Methylene Blue. Catalysts, 12, 1–14.
Kim, H. G., Borse, P. H., Jang, J. S., Jeong, E. D., Jung, O. S., Suh, Y. J., & Lee, J. S. (2009). Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chemical Communications, 39, 5889–5891. https://doi.org/10.1039/b911805e
Laouedj, N. (2011). ZnO-Assisted Photocatalytic Degradation of Congo Red and Benzopurpurine 4B in Aqueous Solution. Journal of Chemical Engineering & Process Technology, 02(02), 1–9. https://doi.org/10.4172/2157-7048.1000106
Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., & Wang, X. (2020). Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 10(3), 1–14. https://doi.org/10.3390/nano10030546
Li, Y., Li, X., Li, J., & Yin, J. (2005). Photocatalytic degradation of methyl orange in a sparged tube reactor with TiO2-coated activated carbon composites. Catalysis Communications, 6(10), 650–655. https://doi.org/10.1016/j.catcom.2005.06.008
McDonald, K. D., & Bartlett, B. M. (2021). Microwave Synthesis of Spinel MgFe2O4Nanoparticles and the Effect of Annealing on Photocatalysis. Inorganic Chemistry, 60(12), 8704–8709. https://doi.org/10.1021/acs.inorgchem.1c00663
Natarajan, K., Singh, P., Bajaj, H. C., & Tayade, R. J. (2016). Facile synthesis of TiO2/ZnFe2O4 nanocomposite by sol-gel auto combustion method for superior visible light photocatalytic efficiency. Korean Journal of Chemical Engineering, 33(6), 1788–1798. https://doi.org/10.1007/s11814-016-0051-4
Prado, A. G. S., Bolzon, L. B., Pedroso, C. P., Moura, A. O., & Costa, L. L. (2008). Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Applied Catalysis B: Environmental, 82(3–4), 219–224. https://doi.org/10.1016/j.apcatb.2008.01.024
Rathinavel, S., R, D., Panda, D., & Manikandan, A. (2021). Synthesis and characterization of MgFe2O4 and MgFe2O4/rGO nanocomposites for the photocatalytic degradation of methylene blue. Inorganic and Nano-Metal Chemistry, 51(2), 210–217. https://doi.org/10.1080/24701556.2020.1771590
Safni, S., Fardila, S., Maizatisna, M., & Zulfarman, Z. (2007). Degradasi Zat Warna Metanil Yellow Secara Sonolisis Dan Fotolisis Dengan Penambahan TiO2-Anatase. Jurnal Sains Dan Teknologi Farmasi, 47–51.
Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77(1), 65–82. https://doi.org/10.1016/S0927-0248(02)00255-6
Tan, K. B., Vakili, M., Horri, B. A., Poh, P. E., Abdullah, A. Z., & Salamatinia, B. (2015). Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Separation and Purification Technology, 150, 229–242. https://doi.org/10.1016/j.seppur.2015.07.009
Tichapondwa, S. M., Newman, J. P., & Kubheka, O. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, 118–119, 102900. https://doi.org/10.1016/j.pce.2020.102900
Widjajanti, E., Tutik, R., & Utomo, M. P. (2011). Pola Adsorpsi Zeolit Terhadap Pewarna Azo Metil Merah Dan Metil Jingga. Prosiding Seminar Nasional Penelitian, Pendidikan Dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 115–122.
Wu, S., Shen, L., Lin, Y., Yin, K., & Yang, C. (2021). Sulfite-based advanced oxidation and reduction processes for water treatment. Chemical Engineering Journal, 414, 128872. https://doi.org/10.1016/j.cej.2021.128872
Xu, D., Ding, T., Sun, Y., Li, S., & Jing, W. (2022). Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for efficient water purification. Frontier Chemical of Science and Engineering, 16, 731–744.
Zhang, L., He, Y., Wu, Y., & Wu, T. (2011). Photocatalytic degradation of RhB over MgFe2O 4/TiO2 composite materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 176(18), 1497–1504. https://doi.org/10.1016/j.mseb.2011.09.022
Zheng, Y., Cao, L., Xing, G., Bai, Z., Huang, J., & Zhang, Z. (2019). Microscale flower-like magnesium oxide for highly efficient photocatalytic degradation of organic dyes in aqueous solution. RSC Advances, 9(13), 7338–7348. https://doi.org/10.1039/C8RA10385B
Ziarati Saravani, A., Nadimi, M., Aroon, M. A., & Ebrahimian Pirbazari, A. (2019). Magnetic TiO2/NiFe2O4/reduced graphene oxide nanocomposite as a recyclable photocatalyst for photocatalytic removal of methylene blue under visible light. Journal of Alloys and Compounds, 803, 291–306. https://doi.org/10.1016/j.jallcom.2019.06.245
Downloads
Published
Issue
Section
License
Jurnal Pendidikan Fisika dan Keilmuan (JPFK) by http://e-journal.unipma.ac.id/index.php/JPFK/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.