Photocatalytic activity of MgFe2O4:TiO2 composite for degrading methylene blue

Authors

  • Hasniah Aliah Department of Physics, Faculty of Science and Technology, Universitas Islam Negeri Sunan Gunung Djati Bandung http://orcid.org/0000-0002-4527-0253
  • Elis Sabilil Hidayah Department of Physics, Faculty of Science and Technology, Universitas Islam Negeri Sunan Gunung Djati Bandung
  • Ryan Nur Iman Department of Physics, College of Engineering and Physics, King Fahd University of Petroleum and Minerals http://orcid.org/0000-0001-6654-0737
  • Asti Sawitri Department of Physics, Faculty of Mathematics and Science, Universitas Halim Sanusi, Jalan Garut No. 02, Bandung, Indonesia http://orcid.org/0000-0002-6154-8737
  • Andhy Setiawan Department of Physics, Faculty of Science and Mathematics, Universitas Pendidikan Indonesia Jalan Dr. Setiabudi No. 229, Bandung, Indonesia http://orcid.org/0000-0002-0922-3644

DOI:

https://doi.org/10.25273/jpfk.v8i1.13510

Keywords:

Degradation, photon energy, composite, cubic, solar irradiation

Abstract

We reported the methylene blue (MB) degradation by the photocatalysis method. This work aimed to know the effectiveness of degradation using a MgFe2O4:TiO2 composite. Synthesis of the composite used the sol-gel method. We synthesized three samples with ratios between MgFe2O4 and TiO2. Those were 100:0, 50:50, and 75:25, respectively. Sample (75:25) degraded MB of 47.23% with a reaction rate of 5.326 x 10-3 minute-1 under solar radiation. Whereas, without solar radiation, a sample showed a lower reaction rate. It happened because the sunlight produced photon energy to produce OH* radical so that it could activate the sample to absorb the dye. Reusable test resulted 19.73% degradation of MB for 100:0, 17.03% for 50:50, and 20.59% for 75:25 for 120 minutes. The XRD result for 75:25 has three phases, which are MgFe2O4 with cubic structure, TiO2 with tetragonal structure, and Fe2O3 with hexagonal structure. This work indicated that the sol-gel method could synthesize composite structures, and the sample may be used to remove methylene blue.

Downloads

Download data is not yet available.

Author Biographies

Hasniah Aliah, Department of Physics, Faculty of Science and Technology, Universitas Islam Negeri Sunan Gunung Djati Bandung

Metal Oxide Semiconductor, Gas Sensor, Photocatalyst, Dye-sensitized Solar Cell, Biomass for Energy

Elis Sabilil Hidayah, Department of Physics, Faculty of Science and Technology, Universitas Islam Negeri Sunan Gunung Djati Bandung

Photocatalyst, Metal oxide Semiconductor

Ryan Nur Iman, Department of Physics, College of Engineering and Physics, King Fahd University of Petroleum and Minerals

Gas Sensor, Photocatalyst, Dye-sensitized Solar Cell, Biomass for Energy

Asti Sawitri, Department of Physics, Faculty of Mathematics and Science, Universitas Halim Sanusi, Jalan Garut No. 02, Bandung, Indonesia

Membrane, Photocatalyst, Gas Sensor, Dye-sensitized solar cell, Biomass Energy

Andhy Setiawan, Department of Physics, Faculty of Science and Mathematics, Universitas Pendidikan Indonesia Jalan Dr. Setiabudi No. 229, Bandung, Indonesia

DSSC, Gas Sensor, Photocatalyst, Learning Method Development, Biomass Energy

References

Aliah, H., Aji, M., Masturi, M., Sustini, E., Budiman, M., & Abdullah, M. (2012). TiO2 Nanoparticles-Coated Polypropylene Copolymer as Photocatalyst on Methylene Blue Photodegradation under Solar Exposure. American Journal of Environmetal Sciences, 8(3), 280–290.

Aliah, H., & Karlina, Y. (2015). Semikonduktor TiO2 Sebagai Material Fotokatalis Berulang. Jurusan FIsika UIN SGD Bandung, IX(1), 185–203.

Aliah, H., Setiawan, A., & Abdullah, M. (2013). Pengaruh Jumlah Lapisan Bulir Polimer Polipropilena Berfotokatalis Semikonduktor TiO2 Terhadap Fotodegradasi Metilen Biru. Prosiding Semirata FMIPA Universitas Lampung, 479–483.

Becker, A., Kirchberg, K., & Marschall, R. (2020). Magnesium Ferrite (MgFe2O4) Nanoparticles for Photocatalytic Antibiotics Degradation. Zeitschrift Fur Physikalische Chemie, 234(4), 645–654. https://doi.org/10.1515/zpch-2019-1430

Ben’ko, E. M., Mamleeva, N. A., & Kharlanov, A. N. (2021). Effect of Ozonation of Lignocellulosic Materials on Sorption of Cationic Dye. Russian Journal of Physical Chemistry A, 95(8), 1698–1704. https://doi.org/10.1134/S0036024421080069

Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Research Letters, 12(1), 1–10. https://doi.org/10.1186/s11671-017-1904-4

Cheng, Y., Xiong, M., Chen, M., & Deng, S. (2021). Ultra-broadband perfect solar energy absorber based on tungsten ring arrays Ultra-broadband perfect solar energy absorber based on tungsten ring arrays. Engineeirng Research Express, 3, 045020.

Demissie, H., An, G., Jiao, R., Ma, G., Liu, L., Sun, H., & Wang, D. (2021). Removal of phenolic contaminants from water by in situ coated surfactant on Keggin-aluminum nanocluster and biodegradation. Chemosphere, 269, 128692. https://doi.org/10.1016/j.chemosphere.2020.128692

Heidari, P., & Masoudpanah, S. M. (2020). Structural and magnetic properties of MgFe2O4 powders synthesized by solution combustion method: The effect of fuel type. Journal of Materials Research and Technology, 9(3), 4469–4475. https://doi.org/10.1016/j.jmrt.2020.02.073

Hitam, C. N. C., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258, 110050. https://doi.org/10.1016/j.jenvman.2019.110050

Jarariya, R. (2022). A Review Based on Spinel Ferrite Nanomaterials-MgFe2O4- Synthesis of Photocatalytic Dye Degradation in Visible Light Response. Journal of Environmental Treatment Techniques.10(2), 149–156.

Joseph, C. G., Taufiq-Yap, Y. H., Letshmanan, E., & Vijayan, V. (2022). Heterogeneous Photocatalytic Chlorination of Methylene Blue. Catalysts, 12, 1–14.

Kim, H. G., Borse, P. H., Jang, J. S., Jeong, E. D., Jung, O. S., Suh, Y. J., & Lee, J. S. (2009). Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chemical Communications, 39, 5889–5891. https://doi.org/10.1039/b911805e

Laouedj, N. (2011). ZnO-Assisted Photocatalytic Degradation of Congo Red and Benzopurpurine 4B in Aqueous Solution. Journal of Chemical Engineering & Process Technology, 02(02), 1–9. https://doi.org/10.4172/2157-7048.1000106

Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., & Wang, X. (2020). Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 10(3), 1–14. https://doi.org/10.3390/nano10030546

Li, Y., Li, X., Li, J., & Yin, J. (2005). Photocatalytic degradation of methyl orange in a sparged tube reactor with TiO2-coated activated carbon composites. Catalysis Communications, 6(10), 650–655. https://doi.org/10.1016/j.catcom.2005.06.008

McDonald, K. D., & Bartlett, B. M. (2021). Microwave Synthesis of Spinel MgFe2O4Nanoparticles and the Effect of Annealing on Photocatalysis. Inorganic Chemistry, 60(12), 8704–8709. https://doi.org/10.1021/acs.inorgchem.1c00663

Natarajan, K., Singh, P., Bajaj, H. C., & Tayade, R. J. (2016). Facile synthesis of TiO2/ZnFe2O4 nanocomposite by sol-gel auto combustion method for superior visible light photocatalytic efficiency. Korean Journal of Chemical Engineering, 33(6), 1788–1798. https://doi.org/10.1007/s11814-016-0051-4

Prado, A. G. S., Bolzon, L. B., Pedroso, C. P., Moura, A. O., & Costa, L. L. (2008). Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Applied Catalysis B: Environmental, 82(3–4), 219–224. https://doi.org/10.1016/j.apcatb.2008.01.024

Rathinavel, S., R, D., Panda, D., & Manikandan, A. (2021). Synthesis and characterization of MgFe2O4 and MgFe2O4/rGO nanocomposites for the photocatalytic degradation of methylene blue. Inorganic and Nano-Metal Chemistry, 51(2), 210–217. https://doi.org/10.1080/24701556.2020.1771590

Safni, S., Fardila, S., Maizatisna, M., & Zulfarman, Z. (2007). Degradasi Zat Warna Metanil Yellow Secara Sonolisis Dan Fotolisis Dengan Penambahan TiO2-Anatase. Jurnal Sains Dan Teknologi Farmasi, 47–51.

Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77(1), 65–82. https://doi.org/10.1016/S0927-0248(02)00255-6

Tan, K. B., Vakili, M., Horri, B. A., Poh, P. E., Abdullah, A. Z., & Salamatinia, B. (2015). Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Separation and Purification Technology, 150, 229–242. https://doi.org/10.1016/j.seppur.2015.07.009

Tichapondwa, S. M., Newman, J. P., & Kubheka, O. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, 118–119, 102900. https://doi.org/10.1016/j.pce.2020.102900

Widjajanti, E., Tutik, R., & Utomo, M. P. (2011). Pola Adsorpsi Zeolit Terhadap Pewarna Azo Metil Merah Dan Metil Jingga. Prosiding Seminar Nasional Penelitian, Pendidikan Dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 115–122.

Wu, S., Shen, L., Lin, Y., Yin, K., & Yang, C. (2021). Sulfite-based advanced oxidation and reduction processes for water treatment. Chemical Engineering Journal, 414, 128872. https://doi.org/10.1016/j.cej.2021.128872

Xu, D., Ding, T., Sun, Y., Li, S., & Jing, W. (2022). Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for efficient water purification. Frontier Chemical of Science and Engineering, 16, 731–744.

Zhang, L., He, Y., Wu, Y., & Wu, T. (2011). Photocatalytic degradation of RhB over MgFe2O 4/TiO2 composite materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 176(18), 1497–1504. https://doi.org/10.1016/j.mseb.2011.09.022

Zheng, Y., Cao, L., Xing, G., Bai, Z., Huang, J., & Zhang, Z. (2019). Microscale flower-like magnesium oxide for highly efficient photocatalytic degradation of organic dyes in aqueous solution. RSC Advances, 9(13), 7338–7348. https://doi.org/10.1039/C8RA10385B

Ziarati Saravani, A., Nadimi, M., Aroon, M. A., & Ebrahimian Pirbazari, A. (2019). Magnetic TiO2/NiFe2O4/reduced graphene oxide nanocomposite as a recyclable photocatalyst for photocatalytic removal of methylene blue under visible light. Journal of Alloys and Compounds, 803, 291–306. https://doi.org/10.1016/j.jallcom.2019.06.245

Downloads

Published

2023-01-24

Issue

Section

Articles