Analysis of Non-Relativistic Energy, Wave Function, and Black Hole’s Application with Minimal Length

Authors

  • A Suparmi Universitas Sebelas Maret
  • Briant Sabathino Harya Wibawa Universitas Sebelas Maret
  • C Cari Universitas Sebelas Maret
  • Suci Faniandari Universitas Sebelas Maret

DOI:

https://doi.org/10.25273/jpfk.v7i2.10469

Keywords:

Schrödinger equation, minimal length, Asymptotic Iteration Method (AIM), Rényi entropy, black hole properties

Downloads

Download data is not yet available.

Author Biographies

A Suparmi, Universitas Sebelas Maret

Department of Physics

Briant Sabathino Harya Wibawa, Universitas Sebelas Maret

Department of Physics

C Cari, Universitas Sebelas Maret

Department of Physics

Suci Faniandari, Universitas Sebelas Maret

Department of Physics

References

Bayrak, O., Boztosun, I., & Ciftci, H. (2007). Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. International Journal of Quantum Chemistry, 107(3), 540-544. https://d1wqtxts1xzle7.cloudfront.net/42027344 .

Hassanabadi, H., Yazarloo, B. H., Ikot, A. N., Salehi, N., & Zarrinkamr, S. (2013). Exact analytical versus numerical solutions of Schrödinger equation for Hua plus modified Eckart potential. Indian journal of Physics, 87(12), 1219-1223. https://d1wqtxts1xzle7.cloudfront.net/33398001.

Ikot, A. N., Akpabio, L. E., & Umoren, E. B. (2010). Exact solution of Schrödinger equation with inverted woods-saxon and Manning-Rosen potentials. Journal of Scientific Research, 3(1), 25-25. https://www.banglajol.info/index.php/JSR/article/download/5310/5128.

Berkdemir, C., & Han, J. (2005). Any l-state solutions of the Morse potential through the Pekeris approximation and Nikiforov–Uvarov method. Chemical physics letters, 409(4-6), 203-207. https://www.sciencedirect.com/science/article/pii/S0009261405006974.

Okon, I. B., Popoola, O., & Isonguyo, C. N. (2017). Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method. Advances in High Energy Physics, 2017. https://www.hindawi.com/journals/ahep/2017/9671816/.

Pekeris, C. L. (1934). The rotation-vibration coupling in diatomic molecules. Physical Review, 45(2), 98. https://journals.aps.org/pr/abstract/10.1103/PhysRev.45.98.

Dong, S. H. (2007). Factorization method in quantum mechanics (Vol. 150). Springer Science & Business Media.

Ahmadov, H. I., Qocayeva, M. V., & Huseynova, N. S. (2017). The bound state solutions of the D-dimensional Schrödinger equation for the Hulthén potential within SUSY quantum mechanics. International Journal of Modern Physics E, 26(05), 1750028. https://www.worldscientific.com/doi/abs/10.1142/S0218301317500288.

Ahmadov, A. I., Naeem, M., Qocayeva, M. V., & Tarverdiyeva, V. A. (2018). Analytical solutions of the Schrödinger equation for the Manning-Rosen plus Hulthén potential within SUSY quantum mechanics. In Journal of Physics: Conference Series (Vol. 965, No. 1, p. 012001). IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/965/1/012001/meta.

Falaye, B. J. (2012). Any â„“-state solutions of the Eckart potential via asymptotic iteration method. Central European Journal of Physics, 10(4), 960-965. https://link.springer.com/article/10.2478/s11534-012-0047-6.

Bayrak, O., & Boztosun, I. (2007). Analytical solutions to the Hulthén and the Morse potentials by using the asymptotic iteration method. Journal of Molecular Structure: THEOCHEM, 802(1-3),17-21. https://www.sciencedirect.com/science/article/pii/S0166128006006257.

Ikot, A. N., Awoga, O. A., & Antia, A. D. (2013). Bound state solutions of d-dimensional Schrödinger equation with Eckart potential plus modified deformed Hylleraas potential. Chinese Physics B, 22(2), 020304. https://iopscience.iop.org/article/10.1088/1674-1056/22/2/020304/meta.

Alimohammadi, M., & Hassanabadi, H. (2017). Alternative solution of the gamma-rigid Bohr Hamiltonian in minimal length formalism. Nuclear Physics A, 957, 439-449.

https://www.sciencedirect.com/science/article/pii/S0375947416302706.

Haouat, S. (2014). Schrödinger equation and resonant scattering in the presence of a minimal length. Physics Letters B, 729, 33-38. https://www.sciencedirect.com/science/article/pii/S0370269313010356.

Zhang, J. Z., & Osland, P. (2001). Perturbative aspects of q-deformed dynamics. The European Physical Journal C-Particles and Fields, 20(2), 393-396. https://link.springer.com/article/10.1007/s100520100649.

Lavagno, A., Scarfone, A. M., & Swamy, P. N. (2006). Classical and quantum q-deformed physical systems. The European Physical Journal C-Particles and Fields, 47(1), 253-261. https://link.springer.com/article/10.1140/epjc/s2006-02557-y.

Dianawati, D. A., Suparmi, A., & Cari, C. (2018). Solution of Schrodinger equation with qdeformed momentum in Coulomb potential using hypergeometric method. In AIP Conference Proceedings (Vol. 2014, no. 020071). AIP Publishing. https://aip.scitation.org/doi/pdf/10.1063/1.5054475.

Lerda, A. (1992). Anyons. Berlin: Springer-Verlag.

Strominger, A. (1993). Black hole statistics. Physical review letters, 71(21), 3397. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.3397.

Macfarlane, A. J. (1989). On q-analogues of the quantum harmonic oscillator and the quantum group SU (2) q. Journal of Physics A: Mathematical and general, 22(21), 4581. https://iopscience.iop.org/article/10.1088/0305-4470/22/21/020/meta.

Sari, R. A., Suparmi, A., & Cari, C. (2015). Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method. Chinese Physics B, 25(1), 010301. https://iopscience.iop.org/article/10.1088/1674-1056/25/1/010301/meta.

Bonatsos, D., Daskaloyannis, C., & Kolokotronis, P. (1997). Coupled Q-oscillators as a model for vibrations of polyatomic molecules. The Journal of chemical physics, 106(2), 605-609. https://aip.scitation.org/doi/abs/10.1063/1.473189.

Johal, R. S., & Gupta, R. K. (1998). Two parameter quantum deformation of U (2)⊃ U (1) dynamical symmetry and the vibrational spectra of diatomic molecules. International Journal of Modern Physics E, 7(05), 553-557. https://www.worldscientific.com/doi/abs/10.1142/S0218301398000294.

Suparmi, A., Cari, C., & Ma’arif, M. (2020). Study of Bohr–Mottelson with minimal length effect for Q-deformed modified Eckart potential and Bohr–Mottelson with Q-deformed quantum for three-dimensional harmonic oscillator potential. Molecular Physics, 118(13), e1694713. https://www.tandfonline.com/doi/abs/10.1080/00268976.2019.1694713.

Chabab, M., El Batoul, A., Lahbas, A., & Oulne, M. (2016). On γ-rigid regime of the Bohr–Mottelson Hamiltonian in the presence of a minimal length. Physics Letters B, 758, 212-218. https://www.sciencedirect.com/science/article/pii/S0370269316301642.

Sprenger, M., Nicolini, P., & Bleicher, M. (2012). Physics on Smallest Scales - An Introduction to Minimal Length Phenomenology. European Journal of Physics, 33(4), 853–862. https://arxiv.org/pdf/1202.1500.pdf.

Garay, L. J. (1995). Quantum gravity and minimum length. International Journal of Modern Physics A, 10(02), 145-165. https://www.worldscientific.com/doi/abs/10.1142/S0217751X95000085.

Bonatsos, D., Lenis, D., Petrellis, D., Terziev, P. A., & Yigitoglu, I. (2006). X (3): an exactly separable γ-rigid version of the X (5) critical point symmetry. Physics Letters B, 632(2-3), 238-242. https://www.sciencedirect.com/science/article/pii/S0370269305015492.

Ciftci, H., Hall, R. L., & Saad, N. (2003). Asymptotic iteration method for eigenvalue problems. Journal of Physics A: Mathematical and General, 36(47), 11807. https://iopscience.iop.org/article/10.1088/0305-4470/36/47/008/meta.

Pratiwi, B. N., Suparmi, A., Cari, C., & Husein, A. S. (2017). Asymptotic iteration method for the modified Pöschl–Teller potential and trigonometric Scarf II non-central potential in the Dirac equation spin symmetry. Pramana, 88(2), 25. https://link.springer.com/content/pdf/10.1007/s12043-016-1326-3.pdf.

Pramono, S., Suparmi, A., & Cari, C. (2016). Relativistic energy analysis of five-dimensional q-deformed radial rosen-morse potential combined with q-deformed trigonometric scarf noncentral potential using asymptotic iteration method. Advances in High Energy Physics, 2016, 1–12. https://arxiv.org/abs/1609.00260.

Hulthen, L., Sugawara, M., & Flugge, S. (1957). Handbuch der Physik. Structure of atomic nuclei, ed. S. Fliigge, 39.

Varshni, Y. P. (1990). Eigenenergies and oscillator strengths for the Hulthén potential. Physical Review A, 41(9), 4682. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.41.4682.

Ikhdair, S. M., & Falaye, B. J. (2014). Bound states of spatially dependent mass Dirac equation with the Eckart potential including Coulomb tensor interaction. The European Physical Journal Plus, 129(1), 1-15. https://link.springer.com/article/10.1140/epjp/i2014-14001-y.

Suparmi, A., Cari, C., & Handhika, J. (2013, April). Approximate solution of Schrodinger equation for Eckart potential combined with Trigonormetric Poschl-teller non-central potential using Romanovski polynomials. In Journal of Physics: Conference Series (Vol. 423, No. 1, p. 012039). IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/423/1/012039/meta.

Darareh, M. D., & Harouni, M. B. (2010). Nonclassical properties of a particle in a finite range trap: The f-deformed quantum oscillator approach. Physics Letters A, 374(40), 4099-4103. https://www.sciencedirect.com/science/article/pii/S0375960110009928.

Arai, A. (1991). Exactly solvable supersymmetric quantum mechanics. Journal of Mathematical Analysis and Applications, 158(1), 63-79. https://www.sciencedirect.com/science/article/pii/0022247X91902674.

Eshghi, M. (2012). Dirac-hyperbolic scarf problem including a coulomb-like tensor potential. Acta Scientiarum. Technology, 34(2), 207-215. https://www.redalyc.org/pdf/3032/303226535011.pdf.

Akpan, I. O., Antia, A. D., & Ikot, A. N. Bound-State Solutions of the Klein-Gordon Equation with-Deformed Equal Scalar and Vector Eckart Potential Using a Newly Improved Approximation Scheme. ISRN High Energy Physics, 2012. https://www.hindawi.com/journals/isrn/2012/798209/.

Eğrifes, H., Demirhan, D., & Büyükkiliç, F. (1999). Polynomial Solutions of the Schrödinger Equation for the “Deformed†Hyperbolic Potentials by

Nikiforov–Uvarov Method. Physica Scripta, 59(2), 90. https://iopscience.iop.org/article/10.1238/Physica.Regular.059a00090/meta.

de Souza Dutra, A. (2005). Mapping deformed hyperbolic potentials into nondeformed ones. Physics Letters A, 339(3-5), 252-254. https://www.sciencedirect.com/science/article/pii/S037596010500383X.

Suparmi, A., Cari, C., & Yuliani, H. (2018). Energy Spectra and Wave Function Analysis of q-Deformed Modified Poschl-Teller and Hyperbolic Scarf II Potentials Using NU Method and a Mapping Method. Advances in Physics Theories and Applications, 2013(16), 64-74. https://doi.org/10.7176/APTA-16-8.

Elviyanti, I. L., Pratiwi, B. N., Suparmi, A., & Cari, C. (2018). The Application of Minimal Length in Klein-Gordon Equation with Hulthen Potential Using Asymptotic Iteration Method. Advances in Mathematical Physics, 2018, 1–8. https://www.hindawi.com/journals/amp/2018/9658679/.

Renyi, A. (1961). Proc. Fourth Berkeley Symp. Math. Stat. Prob. 1960.

Yahya, W. A., Oyewumi, K. J., & Sen, K. D. (2015). Position and momentum informationâ€theoretic measures of the pseudoharmonic potential. International Journal of Quantum Chemistry, 115(21), 1543-1552. https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.24971.

Czinner, V. G., & Iguchi, H. (2016). Rényi entropy and the thermodynamic stability of black holes. Physics Letters B, 752, 306-310. https://www.sciencedirect.com/science/article/pii/S037026931500917X.

Biró, T. S., & Czinner, V. G. (2013). A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy. Physics Letters B, 726(4-5), 861-865. https://www.sciencedirect.com/science/article/pii/S0370269313007612.

Naderi, L., & Hassanabadi, H. (2016). Bohr Hamiltonian and the energy spectra of the triaxial nuclei. The European Physical Journal Plus, 131(1), 1-6. https://link.springer.com/article/10.1140/epjp/i2016-16005-y.

Bajpai, S.D. (1993). Generating function and orthogonality relations of a class of hypergeometric polynomials. Panamerican Mathematical Journal, 3(1), 95-102. http://www.numdam.org/article/AMBP_1994__1_1_21_0.pdf.

Downloads

Published

2021-09-07

Issue

Section

Articles