Telomere Biology: Key to unlocking the fountain of youth…A Systematic Review.
https://doi.org/10.25273/florea.v11i2.21771
Keywords:
Telomere , Telomerase , Oxidative Stress , Telomerase activators , AgingAbstract
Advances in medical science has lead to increase in life expectancy of human beings all over the world. Deterioration of physiological functions is typically associated with ageing process.This often manifests as various diseases which eventually creates a burden on health infrastructure.Telomere attrition is a phenomenon which involves shortening of telomeres with each cycle of cell division.The phenomenon of “Telomere Attrition” is a “Bi edged sword” as while being a protective shield for the genome on one hand, it also is the cause of many senility related degenerative disorders. As the role of telomere biology is well established in ageing,current research therefore aims to develop means to reduce telomere attrition,thereby reducing ageing & age related diseases.This review will focus on summarising the role of telomere biology in ageing & age related diseases while highlighting the recent advances in research aiming towards enhanced longevity & healthy ageing.This review will further emphasize on telomere targetted therapeutics such as telomerase activators & tankyrase inhibitors while also highlighting the role of antioxidative & antiinflammatory agents alongwith indirectly related approaches such as statins.
Downloads
References
Akbari, M., Kirkwood, T. B. L., and Bohr, V. A. (2019). Mitochondria in the signaling pathways that control longevity and health span. Ageing Res. Rev. 54, 100940. doi:10. 1016/j.arr.2019.100940
Akincilar, S. C., Unal, B., and Tergaonkar, V. (2016). Reactivation of telomerase in cancer. Cell. Mol. Life Sci. 73 (8), 1659–1670. doi:10.1007/s00018-016-2146-9
Alder, J. K., and Armanios, M. (2022). Telomere-mediated lung disease. Physiol. Rev. 102 (4), 1703–1720. doi:10.1152/physrev.00046.2021
Allsopp, R. C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E. V., Futcher, A. B., et al. (1992). Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. 89 (21), 10114–10118. doi:10.1073/pnas.89.21.10114
Amano, H., Chaudhury, A., Rodriguez-Aguayo, C., Lu, L., Akhanov, V., Catic, A., et al. (2019). Telomere dysfunction induces sirtuin repression that drives telomeredependent disease. Cell Metab. 29 (6), 1274–1290. doi:10.1016/j.cmet.2019.03.001
Armstrong, E., and Boonekamp, J. (2023). Does oxidative stress shorten telomeres in vivo? A meta-analysis. Ageing Res. Rev. 85, 101854. doi:10.1016/j.arr.2023.101854
Aubert, G., and Lansdorp, P. M. (2008). Telomeres and aging. Physiol. Rev. 88 (2), 557–579. doi:10.1152/physrev.00026.2007
Baigent, C., Blackwell, L., Emberson, J., Holland, L. E., Collins, R., Reith, C., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a metaanalysis of data from 170 000 participants in 26 randomised trials. Lancet 376 (9753), 1670–1681. doi:10.1016/S0140-6736(10)61350-5
Bär, C., Povedano, J. M., Serrano, R., Benitez-Buelga, C., Popkes, M., Formentini, I., et al. (2016). Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia. Blood 127 (14), 1770–1779. doi:10.1182/ blood-2015-08-667485
Barden, A., O’Callaghan, N., Burke, V., Mas, E., Beilin, L., Fenech, M., et al. (2016). n3 fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients 8 (3), 175. doi:10.3390/nu8030175
Bawamia, B., Spray, L., Wangsaputra, V. K., Bennaceur, K., Vahabi, S., Stellos, K., et al. (2023). Activation of telomerase by TA-65 enhances immunity and reduces inflammation post myocardial infarction. Geroscience 45, 2689–2705. doi:10.1007/ s11357-023-00794-6
Bejarano, L., Bosso, G., Louzame, J., Serrano, R., Gómez-Casero, E., MartínezTorrecuadrada, J., et al. (2019). Multiple cancer pathways regulate telomere protection. EMBO Mol. Med. 11 (7), e10292. doi:10.15252/emmm.201910292
Bejarano, L., Schuhmacher, A. J., Méndez, M., Megías, D., Blanco-Aparicio, C., Martínez, S., et al. (2017). Inhibition of TRF1 telomere protein impairs tumor initiation and progression in glioblastoma mouse models and patient-derived xenografts. Cancer Cell 32 (5), 590–607. doi:10.1016/j.ccell.2017.10.006
Bellary, S., Kyrou, I., Brown, J. E., and Bailey, C. J. (2021). Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat. Rev. Endocrinol. 17 (9), 534–548. doi:10.1038/s41574-021-00512-2
Bernardes de Jesus, B., and Blasco, M. A. (2013). Telomerase at the intersection of cancer and aging. Trends Genet. 29 (9), 513–520. doi:10.1016/j.tig.2013.06.007
Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., et al. (2012). Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 4 (8), 691–704. doi:10.1002/ emmm.201200245
Blackburn, E. H. (2001). Switching and signaling at the telomere. Cell 106 (6), 661–673. doi:10.1016/s0092-8674(01)00492-5 Blackburn, E. H., Epel, E. S., and Lin, J. (2015a). Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Sci. (1979) 350 (6265), 1193–1198. doi:10.1126/science.aab3389
Blackburn, E. H., Epel, E. S., and Lin, J. (2015b). Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350 (6265), 1193–1198. doi:10.1126/science.aab3389
Blackburn, E. H., and Gall, J. G. (1978). A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120 (1), 33–53. doi:10.1016/0022-2836(78)90294-2
Blackburn, E. H., Greider, C. W., and Szostak, J. W. (2006). Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 12 (10), 1133–1138. doi:10.1038/nm1006-1133
Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., et al. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Sci. (1979) 317 (5839), 807–810. doi:10.1126/science.1144090
Brouilette, S., Singh, R. K., Thompson, J. R., Goodall, A. H., and Samani, N. J. (2003). White cell telomere length and risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 23 (5), 842–846. doi:10.1161/01.ATV.0000067426.96344.32
Brouilette, S. W., Moore, J. S., McMahon, A. D., Thompson, J. R., Ford, I., Shepherd, J., et al. (2007). Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 369 (9556), 107–114. doi:10.1016/S0140-6736(07)60071-3
Cai, Y., Zhong, Y. di, Zhang, H., lin, Lu P., Liang, Y., Hu, B., et al. (2023). Association between dietary vitamin C and telomere length: a cross-sectional study. Front. Nutr. 10, 1025936. doi:10.3389/fnut.2023.1025936
Campisi, J., Kapahi, P., Lithgow, G. J., Melov, S., Newman, J. C., and Verdin, E. (2019). From discoveries in ageing research to therapeutics for healthy ageing. Nature 571 (7764), 183–192. doi:10.1038/s41586-019-1365-2
Canudas, S., Becerra-Tomás, N., Hernández-Alonso, P., Galié, S., Leung, C., CrousBou, M., et al. (2020). Mediterranean diet and telomere length: a systematic review and meta-analysis. Adv. Nutr. 11 (6), 1544–1554. doi:10.1093/advances/nmaa079
Cawthon, R. M., Smith, K. R., O’Brien, E., Sivatchenko, A., and Kerber, R. A. (2003). Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361 (9355), 393–395. doi:10.1016/S0140-6736(03)12384-7
Chakravarti, D., LaBella, K. A., and DePinho, R. A. (2021). Telomeres: history, health, and hallmarks of aging. Cell 184, 306–322. doi:10.1016/j.cell.2020.12.028
Chang, X., Dorajoo, R., Sun, Y., Wang, L., Ong, C. N., Liu, J., et al. (2020). Effect of plasma polyunsaturated fatty acid levels on leukocyte telomere lengths in the Singaporean Chinese population. Nutr. J. 19 (1), 119. doi:10.1186/s12937-020- 00626-9
Codd, V., Nelson, C. P., Albrecht, E., Mangino, M., Deelen, J., Buxton, J. L., et al. (2013). Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 45 (4), 422–427. doi:10.1038/ng.2528
Corina, A., Rangel-Zúñiga, O. A., Jiménez-Lucena, R., Alcalá-Díaz, J. F., QuintanaNavarro, G., Yubero-Serrano, E. M., et al. (2019). Low intake of vitamin E accelerates cellular aging in patients with established cardiovascular disease: the CORDIOPREV study. Journals Gerontology Ser. A 74 (6), 770–777. doi:10.1093/gerona/gly195
Creighton, H. B., and McClintock, B. (1931). A correlation of cytological and genetical crossing-over in Zea mays. Proc. Natl. Acad. Sci. 17 (8), 492–497. doi:10.1073/pnas.17. 8.492
Crocco, P., De Rango, F., Dato, S., Rose, G., and Passarino, G. (2021). Telomere length as a function of age at population level parallels human survival curves. Aging 13 (1), 204–218. doi:10.18632/aging.202498
Crous-Bou, M., Molinuevo, J. L., and Sala-Vila, A. (2019). Plant-rich dietary patterns, plant foods and nutrients, and telomere length. Adv. Nutr. 10, S296–S303. doi:10.1093/ advances/nmz026
Csiszar, A., Labinskyy, N., Pinto, J. T., Ballabh, P., Zhang, H., Losonczy, G., et al. (2009). Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiology-Heart Circulatory Physiology 297 (1), H13–H20. doi:10.1152/ajpheart. 00368.2009
Schellnegger M, Hofmann E, Carnieletto M and Kamolz L-P (2024), Unlocking longevity: the role of telomeres and its targeting interventions. Front. Aging 5:1339317. doi: 10.3389/fragi.2024.1339317)
Wirth, A., Wolf, B., Huang, C. K., Glage, S., Hofer, S. J., Bankstahl, M., et al. (2021). Novel aspects of age-protection by spermidine supplementation are associated with preserved telomere length. Geroscience 43 (2), 673–690. doi:10.1007/s11357-020-00310-0
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Every accepted manuscript should be accompanied by "Copyright Transfer Agreement" prior to the article publication.
Florea : Jurnal Biologi dan Pembelajarannya by http://e-journal.unipma.ac.id/index.php/JF is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Author who publish with this journal agree to the following terms:
- Author not hold and retain copyright and grant the journal of first publication with the work simultaneously licenced under Creative Commons Atribution Licence that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.