Studi Eksploratif Kualitas Bukti Matematis pada Soal Aritmatika Matriks Berbasis Motivation to Reasioning Tasks

M. Zainudin

Abstract


Hasil kajian eksploratif ini memaparkan kualitas bukti matematis oleh mahasiswa pada soal aritmatika matriks berbasis motivation to reasioning tasks. Metode penelitian yang digunakan adalah kualitatif dengan model grounded theory melalui 3 tahap yakni open coding, selective coding, dan theoretical coding. Pada akhir pembahasan sub bab aritmatika matriks pada matakuliah aljabar linier, mahasiswa mendapatkan tugas membuktikan 3 soal aritmatika matriks untuk mengukur kemampuan konstruksi bukti matematis. Mahasiswa dikelompokkan menjadi 3 tingkatan, yakni tinggi, sedang, dan rendah. Pada tahap open coding, dilakukan analisis hasil pekerjaan mahasiswa terhadap 3 soal tersebut untuk menentukan kategori yang relevan. Tahap selective coding dilakukan dengan menyeleksi dan pendalaman terhadap penemuan kategori melalui interview dengan responden yang diambil berdasarkan sampel teoritis (masing-masing tingkatan diambil 3 responden). Tahap theoretical coding ditemukan bahwa kualitas konstruksi bukti matematis dalam matakuliah aljabar linier pada soal aritmatika matriks dapat ditentukan berdasarkan 6 kategori, yakni langkah awal, alur pembuktian, ketaatan konsep, argumen, dan penggunaan kunci.

Keywords


bukti matematis; motivation to reasioning tasks; soal aritmatika matriks

Full Text:

PDF

References


Findel, B. R. Learning and Understanding in Abstract Algebra. Australia: New Hampshire. 2001.

Tall, D. From School to University: The Effects of LEarning Styles in the Transition from Elementary to Advanced Mathematical Thinking. Dalam M. O. Thomas (Penyunt.), The Seventh Annual Australasian Bridging Network Mathematics Conference (hal. 9-26). Australia: University of Auckland. 1997.

Finlow, B. K. Investigating Nation of Proof: A Study of Student's Proof Activities within the Contextof a Falliblist and Society Theory. Australia: South Bank University. 1996.

Sabri. Prospective Secondary School Teachers' Conceptions of Mathematical Proof in Indonesia. Amerika: Curtin University. 2003.

Velleman, Daniel J. How to Proof it a Structured Approach. 2th ed. New York: Cambridge University Press. 2009.

Solow, Daniel. How to Read and Do Proof. 5th ed. Cleveland: John Wiley & Sons, Inc. 2010.

Hanna, Gila, et al. Explanation and Proof in Mathematics. New York: Springer. 2010.

Cyr, Stephane. Development of Beggining Skills in Proving and Proof Writting by Elementary School Student. www.cerme7.univ.rzeszow.p1/WG/1/Cerme7_WG1_Cyr.pdf. 2013. (diakses 4 Agustus 2015).

Hanna, G., & Jahnke, N. Proof and Proving. Dalam A. J. Bishop, International Handbook of Mathematics Education (hal. 235-253). Dordrecht: Kluwer Academic Publishers. 1996.

Suryadi, Didi. Model Bahan Ajar dan Kerangka Kerja Pedagogi Matematika untuk Menumbuhkembangkan Kemampuan Berpikir Matematik Tingkat Tinggi. Laporan Penelitian. http://didi-suryadi.staf.upi/edu/artikel/. 2007. (diakses 4 Agustus 2015).

Alcock, L., & Weber, K. Referential and Sintactic Approches to Proof: Case Studies from a Transitision Course. Dalam H. In Chick, & J. Vincent (Penyunt.), Proceeding of the 29th Conference Group for the Psychology of Mathematics Education (hal. 33-40). Melbourne : Australia. 2005.

Chin, E.-T. Mathematical Proof as Formal Procept in Advanced Mathematical Thinking. Shanghai, http://online.trc.edu/PME2003/PDF/RR_chin.pdf, China. 2003. (diakses 4 Agustus 2015).

Polya, G. Hoe to Solve it (New Mathematical Method). Second Edition. New Jersey: Prence University Press. 1997.

Gray, E. M., & Tall, D. O. Duality,Ambiguity and Flexibility: A Proceptual View of Simple Arithmetic. Journal for Research Mathematics Education , 115-141. 1994.

Gray, E., & Tall, D. Abstraction as a Natural Process of Mental Compression. Mathematics Education Research Journal , 23-40. 2007.

Tall, D. O. The Transition to Formal Thinking in Mathematics. Mathematics Education Research Journal, 5-24. 2008.

Spronsen, Hillary Dee Van. Proof Processes of Novice Mathematics Education. The University of Montana Missoula, MT. 2008.

Schwarz, Björn & Kaiser, Gabriele. Professioanal Competence of Future Mathematics Teachers on Argumentation and Proof and How Evaluate It. Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Education. 2009.

Moursund, Dave. Computational Thinking and Math Maturity. University of Oregon, Eugene, Oregon 97403. 2007.

Takac, Zdenco. Influence of MRP Tasks on Student’s Willingness to Reasioning and Proving. Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Education. 2009.

Jones, Michael and Aloy, Irit. Guiding the Use of Grounded Theory in Doctoral Studies. International Journal of Doctoral Studies. 6 (N/A), 95-114. 2011.

Arikunto, Suharsimi. Dasar-dasar Evaluasi Pendidikan (Edisi 2). Jakarta: Bumi Aksara. 2012.

Ruseffendi, E.T. Dasar-dasar Penelitian Pendidikan & Bidang Non-Eksakta Lainnya. Bandung: Tarsito. 2010.


Article Metrics

Abstract has been read : 723 times
PDF file viewed/downloaded: 0 times


DOI: http://doi.org/10.25273/jipm.v4i1.836

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jurnal Ilmiah Pendidikan Matematika



 

View JIPM Stats

 

JIPM indexed by:

       


Copyright of JIPM (Jurnal Ilmiah Pendidikan Matematika) ISSN 2502-1745 (Online) and ISSN 2301-7929 (Print)