Pengaruh pH dan Metabolisme Bakteri Escherichia coli dalam Reaktor Microbial Fuel Cell Terhadap Reduksi Kromium Heksavalen

Prapti Ira Kumalasari, Junety Monde, Zefanya Bernadi Yusuf, Rini Rini

Abstract


Kalimantan merupakan pulau yang terkenal akan sektor  pertambangan salah satunya di daerah delta Mahakam, yang dalam proses eksploitasinya berpotensi menghasilkan limbah logam berat, seperti logam berat Cr6+. Pencemaran logam Cr6+ cukup sulit untuk terurai dilingkungan dan bersifat karsinogenik, karena dengan konsentrasi kecil saja dapat menimbulkan tingkat keracunan yang sangat tinggi pada makhluk hidup, sehingga pengolahan terhadap limbah tersebut sangat penting. Microbial Fuel Cell merupakan suatu metode yang dapat membantu proses pengolahan limbah dengan cara mereduksi Cr6+ menjadi Cr3+ dengan katalisis mikrobiologis. Penelitian ini menggunakan metode reaktor double-chamber yaitu terdapat ruang anoda yang berisi bakteri anaerob dan basic anolyte, sedangkan pada ruang katoda terdapat kalium dikromat dengan konsentrasi 18 mg/L dan variasi pH 3, 4 dan 5 yang dilakukan selama 10 hari. Kondisi pH optimum pada proses reduksi terjadi pada pH 4 dengan besar persen penurunan sekitar 98%. Dan produksi listrik tertinggi pada hari ke-2 pada variasi pH 3 dengan nilai power density sebesar sebesar 11, 06 mW/m2.


Keywords


kromium; microbial fuel cell; pH; reduksi

Full Text:

DOWNLOAD PDF

References


Agustina, T. E., Faizal, M., Aprianti, T., Teguh, D., Aditya, M., Putra, I. G., Prayesi, M. R., Fitrializa, U. (2018). Pengolahan Limbah Logam Berat Kromium Hexavalen Menggunakan Reagen Fenton dan Adsorben Keramik Zeolit. Jurnal Rekayasa Kimia dan Lingkungan, 13(1), 60–69.

Asmadi, Endro, S., & Oktiawan, W. (2009). Pengurangan Chrom (Cr) dalam Limbah Cair Industri Kulit pada Proses Tannery Menggunakan Senyawa Alkali Ca(OH)2, NaOH dan NaHCO3 (Studi Kasus PT. Trimulyo Kencana Mas Semarang). Jurnal AI, 5(1), 41–54.

Darlan, Yudi, Kamiludin, Udayana, Arifin, L. (2009). Daerah Kasus Delta Mahakam Kalimantan Timur. Jurnal Geologi Kelautan, 7(236), 23–29.

Fikri, M. (2011). Microbial Fuel Cell, Energi Alterntif dari Bakteri. Bandung: ITB News

Gude, V. G. (2016). Wastewater treatment in microbial fuel cells - An overview. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2016.02.022

Jadhav, G. S., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol, 100(2), 717-723. doi: 10.1016/j.biortech.2008.07.041.

Kamau, J. M., Mbui, D. N., Mwaniki, J. M., Mwaura, F. B., and Kamau, G. N. (2017). Microbial Fuel Cells: Influence of External Resistors on Power, Current and Power Density. Journal of Thermodynamics & Catalysis, 08(01), 1–5. https://doi.org/10.4172/2157-7544.1000182

Padarauskas, A., Judžentiene, A., Naujalis, E., & Paliulionyte, V. (1998). On-line preconcentration and determination of chromium(VI) in waters by high-performance liquid chromatography using pre-column complexation with 1,5-diphenylcarbazide. Journal of Chromatography A, 808(1–2), 193–199. https://doi.org/10.1016/S0021-9673(98)00118-6

Rabaey, K., Ossieur, W., Verhaege, M., & Verstraete, W. (2005). Continuous microbial fuel cells convert carbohydrates to electricity. Water Science and Technology. https://doi.org/10.2166/wst.2005.0561

Silva, B., Figueiredo, H., Neves, I.C and Tavares, T. (2009). The Role of pH on Cr(VI) Reduction and Removal by Arthrobacter Viscosus, International Journal of Chemical and Biological Engineering, 2(2), : 100-103.

Sophia, A. C., & Sai, S. (2016). Modified microbial fuel cell for Cr(VI) reduction and simultaneous bio-electricity production. Journal of Environmental Chemical Engineering, 4(2), 2402–2409. https://doi.org/10.1016/j.jece.2016.04.025

Sophia, A. C., & Saikant, S. (2016). Reduction of chromium(VI) with energy recovery using microbial fuel cell technology. Journal of Water Process Engineering, 11, 39–45. https://doi.org/10.1016/j.jwpe.2016.03.006

Sun, G., Thygesen, A., & Meyer, A. S. (2015). Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization. Applied Microbiology and Biotechnology, 99(11), 4905–4915. https://doi.org/10.1007/s00253-015-6513-5

Wang, H., Wang, Q., Li, X., Wang, Y., Jin, P., Zheng, Y., … Qingbiao Li. (2019). Bioelectricity generation from the decolorization of reactive blue 19 by using microbial fuel cell. Journal of Environmental Management, 248(March), 109310. https://doi.org/10.1016/j.jenvman.2019.109310

Watson, V. J. (2013). Characterization and performance of activated carbon catalysts and polymer membrane layers for microbial fuel cell cathodes and an analysis of power overshoot. A Dissertation in Environmental Engineering, The Pennsylvania State University.

Xafenias, N., Zhang, Y., & Banks, C. J. (2013). Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate. Environmental Science and Technology, 47(9), 4512–4520. https://doi.org/10.1021/es304606u


Article Metrics

Abstract has been read : 3486 times
DOWNLOAD PDF file viewed/downloaded: 0 times


DOI: http://doi.org/10.25273/cheesa.v2i2.5481

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Accredited:
   
Indexed by:
         

        

                                                         

                                                                                     Creative Commons License

Chemical Engineering Research Articles by http://e-journal.unipma.ac.id/index.php/cheesa is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
                                                                                         
Copyright of CHEESA: Chemical Engineering Research Articles, ISSN 2614-8757 (Print)2615-2347 (Online)
Published by Universitas PGRI Madiun
  
Web Analytics View Statistic