
Analysis of Pyrolytic Product Distribution for B3 and Non-B3 Medical Waste Pyrolysis
Abstract
The coronavirus disease (COVID-19) has badly impacted many sectors, particularly medical waste generation in healthcare facilities. The increasing amount of medical waste poses a serious threat to health and environmental sustainability. Traditional waste processing (burning) cannot be used for B3 medical waste and is often mixed with non-B3 medical waste. This is because it potentially generates dangerous chemicals emitted into the atmosphere. Meanwhile, pyrolysis as a superior thermochemical technology is an effective solution for treating both B3 medical waste and non-B3 medical waste. The waste used in this study has good characteristics, as indicated by the low water and high fixed carbon content. The pyrolysis process yields products with economic value, such as solid, liquid, and gas products. Therefore, this study aims to determine the levels of products that can be produced from B3 and non-B3 medical waste. The results showed that rubber bands produce the highest proportion of liquid products at 44%, the highest solid products were obtained from LDPE plastic waste with a proportion of 65%, while the highest gas product was produced by mask waste at 45%. Based on the results, waste with high product yields can be used as an alternative energy source, such as gasoline, LPG, briquettes, and battery-based materials.
Full Text:
DOWNLOAD PDFReferences
Aini, N., Jamilatun, S., & Pitoyo, J. (2022). Pengaruh tipe biomasa pada produk pirolisis : a review. Agroindustrial Technology journal, 06(01), 89–101. DOI: 10.21111/atj.v6i1.7559
Ali, S. A., Parvin, F., Al-Ansari, N., Pham, Q. B., Ahmad, A., Raj, M. S., … Thai, V. N. (2021). Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS : a case study of memari municipality, India. Environmental Science and Pollution Research, 28, 7528–7550. doi: 10.1007/s11356-020-11004-7
Amrullah, A., Ristianingsih, Y., Mursadin, A., & Abdi, C. (2015). Studi eksperimental bio oil berbahan baku limbah sisa makanan dengan variasi temperatur pirolisis. Proceeding Seminar Nasional Tahunan Teknik Mesin XIV, (Snttm Xiv), 7–14.
Aragaw, T. A., & Mekonnen, B. A. (2021). Current plastics pollution threats due to COVID-19 and its possible mitigation techniques: a waste-to-energy conversion via Pyrolysis. Environmental Systems Research, 10, 1-11. DOI: 10.1186/s40068-020-00217-x
Awad, M., Moustafa-farag, M., Wei, L., Huang, Q., & Liu, Z. (2020). Effect of garden waste biochar on the bioavailability of heavy metals and growth of brassica juncea ( L .) in a multi-contaminated soil. Arabian Journal of Geosciences, 13, 1–12. DOI: 10.1007/s12517-020-05376-w
Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress. DOI: 10.1016/j.tsep.2017.06.003
Dharmaraj, S., Ashokkumar, V., Pandiyan, R., Halimatul Munawaroh, H. S., Chew, K. W., Chen, W. H., & Ngamcharussrivichai, C. (2021). Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere, 275, 130092. DOI: 10.1016/j.chemosphere.2021.130092
Fang, S., Jiang, L., A, P. L., Bai, J., & Chang, C. (2020). Study on pyrolysis products characteristics of medical waste and fractional condensation of the pyrolysis oil. Energy, 195, 116969. DOI: 10.1016/j.energy.2020.116969
Gao, N., Sipra, A. T., & Quan, C. (2020). Thermogravimetric analysis and pyrolysis product characterization of municipal solid waste using sludge fl y ash as additive. Fuel, 281, 118572. DOI: 10.1016/j.fuel.2020.118572
Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis. Elsevier B.V. DOI: 10.1016/j.jaap.2017.11.019
Klinghoffer, N. B., & Castaldi, M. J. (2013). Gasification and pyrolysis of municipal solid waste (MSW). Waste to Energy Conversion Technology. DOI: 10.1533/9780857096364.2.146
Kriswibowo, A., Wahyuningtiyas, A., Wandira, N., & Prasetyo, K. (2021). Kerjasama pemerintah dan swasta dalam pengelolaan limbah medis Covid - 19 di Kota Madiun. Public Inspiration, 6(1), 8–18. DOI: 10.22225/pi.6.1.2021.8-18
Kurniawan, E., & Nasrun. (2017). Karakterisasi bahan bakar dari sampah plastik jenis high density polyethelene (HDPE) dan low density polyethelene (LDPE). Jurnal Teknologi Kimia Unimal, 3(2), 41–52.
Liu, X., Chen, M., & Wei, Y. (2015). Kinetics based on two-stage scheme for co-combustion of herbaceous biomass and bituminous coal. Fuel, 143, 577–585. DOI: 10.1016/j.fuel.2014.11.085
Ma, W., Rajput, G., Pan, M., Lin, F., Zhong, L., & Chen, G. (2019). Pyrolysis of typical msw components by Py-GC / MS and TG-FTIR. Fuel, 251(April), 693–708. DOI: 10.1016/j.fuel.2019.04.069
Matsakas, L., Gao, Q., Jansson, S., Rova, U., & Christakopoulos, P. (2017). Green conversion of municipal solid wastes into fuels and chemicals. Electronic Journal of Biotechnology, 26, 69–83. DOI: 10.1016/j.ejbt.2017.01.004
Nanda, S., Dalai, A. K., Berruti, F., & Kozinski, J. A. (2016). Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, Activated Carbon and pecialty Materials. Waste and Biomass Valorization, 7, 201-235. DOI: 10.1007/s12649-015-9459-z
Novita, S. A., Santosa, S., Nofialdi, N., Andasuryani, A., & Fudholi, A. (2021). Parameter operasional pirolisis biomassa. Agroteknika, 4(1), 53–67. DOI: 10.32530/agroteknika.v4i1.105
Purwanti, A. A. (2018). Pengelolaan limbah bahan berbahaya dan beracun rumah sakit di RSUD Dr.Soetomo surabaya. Jurnal Kesehatan Lingkungan, 10, 291–298.
Qin, L., Han, J., Zhao, B., Chen, W., & Xing, F. (2018). The kinetics of typical medical waste pyrolysis based on gaseous evolution behaviour in a micro-fluidised bed reactor. Waste Management and Research, 36(11), 1073–1082. DOI: 10.1177/0734242X18790357
Qureshi, M. S., Oasmaa, A., Pihkola, H., Deviatkin, I., Tenhunen, A., Mannila, J., … Laine-Ylijoki, J. (2020). Pyrolysis of plastic waste: Opportunities and challenges. Journal of Analytical and Applied Pyrolysis, 152(February), 1048. DOI: 10.1016/j.jaap.2020.104804
Rachmat, R., & Nadjib, M. (2022). Implementasi kebijakan pengelolaan limbah medis infeksius pada era COVID-19. Journals of Ners Community, 13(4), 449–458. DOI: 10.55129/jnerscommunity.v13i4.2088
Riandis, J. A., Setyawati, A. R., Sanjaya, A. S. (2021). Pengolahan Sampah Plastik Dengan Metode Pirolisis menjad Bahan Bakar Minyak. Jurnal Chemugry, 5(1), 8–14. DOI: 10.30872/cmg.v5i1.4755
Ridhuan, K., Irawan, D., & Inthifawzi, R. (2019). Proses pembakaran pirolisis dengan jenis biomassa dan karakteristik asap cair yang dihasilkan. Turbo, 8(1), 69–78. Retrieved from LINK
Sari, G. L. (2018). Kajian potensi pemanfaatan sampah plastik menjadi bahan bakar cair. Al-Ard: Jurnal Teknik Lingkungan, 3(1), 6–13. DOI: 10.29080/alard.v3i1.255
Savira, F. L., & Hendriyanto, O. (2018). Pirolisis sampah plastik sebagai bahan bakar alternatif dengan penambahan sampah ranting. Jurnal Envirotek, 9(2). DOI: 10.33005/envirotek.v9i2.966
Shen, J., Wang, X. S., Garcia-Perez, M., Mourant, D., Rhodes, M. J., & Li, C. Z. (2009). Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 88(10), 1810–1817. DOI: 10.1016/j.fuel.2009.05.001
Silva, J. D. O. da, Santos, D. E. L., Abud, A. K. de S., & Oliveira, A. M. de. (2020). Characterization of acerola (Malpighia emarginata) industrial waste as raw material for thermochemical processes. Waste Management, 107, 143–149. DOI: 10.1016/j.wasman.2020.03.037
Sitompul, P. P. E. (2021). Menilik kebijakan pengolahan limbah B3 fasilitas pelayanan kesehatan selama pandemi COVID-19 di Provinsi Jawa Barat. Dinamika Lingkungan Indonesia, 8(1), 73–79. DOI: 10.31258/dli.8.1.p.73-79
Sukarta, I. N., Sastrawidana, I. D. K., Putu, N., & Ayuni, S. (2018). Proximate analysis and calorific value of pellets in biosolid combined with wood waste biomass. Journal of Ecological Engineering, 19(3), 185–190. DOI: 10.12911/22998993/86153
Surono, U. B., & Ismanto. (2016). Pengolahan sampah plastik jenis PP, PET dan PE menjadi bahan bakar minyak dan karakteristiknya. Jurnal Mekanika dan Sistem Termal, 1(1), 32–37. Retrieved from DOI: LINK
Syamsiro, M., Hadiyanto, A. N., & Mufrodi, Z. (2016). Rancang bangun mesin pencacah plastik sebagai bahan baku mesin pirolisis skala komunal. Jurnal Mekanika dan Sistem Termal (JMST), 1(2), 43–48.
Wajdi, B., Safiruddin, Novianti, B. A., & Zahara, L. (2020). Pengolahan sampah plastik menjadi Bahan bakar minyak ( BBM ) dengan metode pirolisis sebagai energi alternatif. Kappa Jurnal, 4(1), 100–112. DOI: 10.29408/kpj.v4i1.2156
WHO. (2018). Health-care waste. WHO. Retrieved from Retrieved from LINK
WHO. (2018). Limbah perawatan kesehatan. World Health Organization. Retrieved fromLINK
Yanti, R. N., Ratnaningsih, A. T., & Ikhsani, H. (2022). Pembbuatan bio-briket dari produk pirolisis biochar cangkang kelapa sawit sebagai sumber energi alternatif. Jurnal Ilmiah Pertanian, 19(1), 11–18. DOI: 10.31849/jip.v19i1.7815
Article Metrics
Abstract has been read : 265 timesDOWNLOAD PDF file viewed/downloaded: 0 times
DOI: http://doi.org/10.25273/cheesa.v5i2.14134.101-110
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.