
Jurnal Pendidikan Fisika dan Keilmuan (JPFK) 
Vol. 7, No 2., September 2021, pp. 77-107 
P-ISSN: 2549-4996, E-ISSN: 2548-5806, DOI: http://doi.org/10.25273/jpfk.v7i2.10469     

  

“Received August 11, 2021; Revised August 25, 2021; Accepted September 7, 2021” 
 

Analysis of Non-Relativistic Energy, Wave Function, and Black 
Hole’s Application with Minimal Length 

 
Suparmi 1, Briant Sabathino Harya Wibawa 1, Cari 1, Suci Faniandari 1 

1 Physics Department, Universitas Sebelas Maret, Surakarta 57126, Indonesia. 
E-mail: soeparmi@staff.uns.ac.id; briantwibawa@gmail.com; cari@staff.uns.ac.id; 

sfaniandari@student.uns.ac.id 

 
Abstrak 

Persamaan Schrödinger untuk potensial Eckart termodifikasi q-deformasi diselidiki 
dengan adanya formalisme panjang minimal menggunakan perkiraan fungsi gelombang baru 
dan potensi q-deformed. Itu direduksi menjadi persamaan Schrödinger dengan potensi Poschl-
Teller yang dimodifikasi. Persamaan ini diselesaikan dengan menggunakan Metode Iterasi 
Asimtotik (AIM) untuk mendapatkan persamaan nilai eigen energi dan fungsi gelombang. 
Fungsi gelombang digunakan untuk menentukan entropi Rényi sistem kuantum. Kemudian, 
entropi Rényi digunakan untuk menentukan parameter energi massa, suhu dan kapasitas 
panas lubang hitam untuk beberapa molekul diatomik. Spektrum energi menunjukkan bahwa 
peningkatan bilangan kuantum radial dan sudut (n, L), lebar potensial (γ), parameter panjang 
minimal (αML), dan massa molekul (m), menyebabkan penurunan nilai eigen energi. Bilangan 
kuantum radial dan parameter paling berpengaruh terhadap fungsi gelombang, jumlah 
gelombang, dan panjang gelombang. Parameter lebar potensial, bilangan kuantum radial, dan 
entropi paling berpengaruh terhadap entropi Rényi, parameter energi massa, suhu dan 
kapasitas panas lubang hitam Schwarzschild. Peningkatan n dan γ menyebabkan penurunan 
Rd, M, TR, dan CR tetapi peningkatan d menyebabkan peningkatan  Rd, M, TR, dan CR. Besaran-
besaran ini adalah kunci untuk menganalisis lebih lanjut fitur karakteristik dari suatu sistem atau 
partikel. 

 

Kata Kunci: persamaan Schrödinger; panjang minimal; Metode Iterasi Asimtotik (AIM), entropi 
Renyi; sifat lubang hitam. 
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Abstract 

The Schrödinger equation for q-deformed modified Eckart potential was investigated in 
the presence of minimal length formalism using the approximate new wave function and q-
deformed potential. It was reduced to the Schrödinger equation with modified Poschl-Teller 
potential. This equation was solved using the Asymptotic Iteration Method (AIM) to get the 
energy eigenvalues equation and wave functions. The wave function was used to determine the 
Rényi entropy of a quantum system. Then, the Rényi entropy was used to determine the mass-
energy parameter, temperature and heat capacity of the black hole for some diatomic 
molecules. The energy spectra showed that the increase of radial and angular quantum number 
(n, L), potential width (γ), minimal length parameter (αML), and the molecule mass (m), caused 
the decrease of energy eigenvalues. The radial quantum number and the γ parameter had the 
most effect on the wave functions, the number of waves, and the wavelength. The potential 
width, radial quantum number, and entropy parameter had the most effect on Rényi entropy, 
mass-energy parameter, temperature, and heat capacity of Schwarzschild black hole. The 
increase of n and γ caused the decrease of Rd, M, TR, and CR, but the increase of d caused the 
increase of Rd, M, TR, and CR. These properties are the key to further analyzing the 
characteristic features of a system or particle. 
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INTRODUCTION 
An analytical solution of the radial Schrӧdinger equation is very important in 

quantum mechanics because the wave functions and energy eigenvalues contain 
all the important information needed to describe quantum systems (Bayrak et al., 
2007). Researchers have been conducting this research for years to investigate the 
solution of wave and energy equations for various potentials. Some potentials are 
solved exactly (Hassanabadi et al., 2013; Ikot et al., 2010) while others can only be 
solved by using a different form of approach (Berkedemir and Han, 2005; Okon et 
al., 2017; Pekeris, 1934).  Several different methods also have been used to solve 
the Schrӧdinger equation for wave functions and energy with different potentials, 
such as the factorization method (Dong, 2007), supersymmetry of quantum 
mechanics (SUSYQM) (Ahmadov et al., 2017; Ahmadov et al., 2018), Asymptotic 
Iteration Method (AIM) (Falaye, 2012; Bayrak and Boztosun, 2007), Nikiforov–
Uvarov method (NU) (Berkdemir and Han, 2005; Ikot et al., 2013). 

 The minimal length is the canonical commutation relationship between 
position and momentum operators by adding a small correction of a constant 
quantity in the Heisenberg uncertainty principle. The minimal length is also known 
as the Generalized Uncertainty Principle (GUP). The minimal length parameter is 
an additional correction due to the presence of quantum gravity on the system such 
as string theory and a black hole in the form of a constant parameter  . The minimal 
length parameter has an interval of  . The minimal length equation returns to the 
Heisenberg uncertainty equation if the energy of the particle system is smaller than 
the Planck mass and is close to zero (Alimohammadi and Hassanabadi, 2017; 
Haouat, 2014).  

 The deformation of q in a group of quantum systems has been developed 
gradually in mathematics, chemistry, and physics. In physics studied in detail are 
nuclear physics and high energy (Zhand and Osland, 2001; Lavagno et al., 2006; 
Dianawati et al., 2018), black hole (Lerda, 1992), cosmic strings (Strominger, 
1993), the q-deformed harmonic oscillator (Macfarlane, 1989), expression of 
oscillatory-rotational spectra of multi-atomic molecules (Sari et al., 2015), and q-
deformed exponential or hyperbolic potential (Bonastos et al., 1997; Johal and 
Gupta, 1998). 

 The Bohr Mottelson equation in minimal length formalism for the q-deformed 
modified Eckart potential has been solved by the hypergeometry method (Suparmi 
et al., 2019) but the research has not been used to determine Rényi entropy and 
thermodynamical properties of a black hole. Therefore, in this paper, the 
Schrӧdinger equation in minimal length formalism for q-deformed modified Eckart 
potential will be solved using Asymptotic Iteration Method (AIM) to obtain the 
energy spectra and its corresponding wave function which will be used to 
determine Rényi entropy and thermodynamical properties of a black hole (Czinner 
and Iguchi, 2016; Biro and Czinner, 2013). The radial part of Schrӧdinger equation 
in minimal length formalism for q-deformed modified Eckart potential is solved 
using an approximate solution by introducing a new wave function (Chabab et al., 
2016) such that it is reduced to a usual Schrӧdinger like equation that is solvable by 
AIM.  

 In this work, we examine the energy eigenvalue and eigenfunction of a 
system influenced by q-deformed modified Eckart potential and also with the 
presence of minimal length which has not been investigated before. Furthermore, 
we also apply the energy eigenvalue and eigenfunction equations to the diatomic 
molecules (CO, NO, O2, I2) computation of Renyi entropy and the thermodynamics 
properties of the Schwarzschild black hole. The thermodynamics properties are an 
important parameter to analyze the characteristic features of a system or particle. 
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We have simulated and analyzed the mass-energy parameter, the 
temperature, and also the heat capacity of the Schwarzschild black hole. 

This paper is structured as follows. In Section 2, the approximate solution of 
the Schrӧdinger equation with minimal length effect is briefly described. The q-
deformed modified Eckart potential is described in Section 3. The q-deformed 
hyperbolic potential properties potential is described in Section 4 The Asymptotic 
Iteration Method (AIM) is briefly reviewed in Section 5. The Rényi entropy and its 
application to a black hole are reviewed in Section 6. The result and discussions 
about the energy spectrum, wave function, Rényi entropy, and application black 
hole are presented in Section 7. Finally, in Section 8, the conclusion is presented. 
 
THE APPROXIMATE SOLUTION OF THE SCHRÖDINGER EQUATION WITH 
MINIMAL LENGTH EFFECT 

The particle dynamic in quantum mechanics corresponds to the position and 
momentum of particles. The study of commutation relations between position and 
momentum operators is explained using the Heisenberg uncertainty principle 
(Sprenger et al., 2012; Garay, 1995), given by 

ˆ ˆ,x p i          (1) 

where x̂  is position operator, p̂  is momentum operator, i  is an imaginary number, 

and 
2

h
=  with h  is Planck constant. This important idea can be explained by 

noncommutative geometry (Bonatsos et al., 2006) in the quantum gravity (Ciftci et 
al., 2003; Pratiwi et al., 2017; Pramono et al., 2016) and the string theory context 
(Hulthe and Sugawara, 1957; Varshni, 1990). 

The presence of quantum gravity on quantum mechanics can find the 
existence of a minimal observable distance on the order of the Planck length. 
Therefore, the Heisenberg uncertainty principle gets additional correction due to the 
presence of quantum gravity, which is well known as the Generalized Uncertainty 
Principle (GUP) (Alimohammadi and Hassanabadi, 2017; Chabab et al., 2016), 
given by 

( )2, 1 MLX P i p= +     (2) 

where ML  is a minimal length parameter which is in the range of 0 1ML  , P  is 

the quantity of momentum in high energy and p  is the quantity of momentum in 

low energy. In GUP parameters ML should be calculated from fundamental theory. 

When energy is smaller than the Planck mass scale, ML  approaches zero and we 

can restore to the Heisenberg uncertainty principle (Alimohammadi and 
Hassanabadi, 2017; Chabab et al., 2016) 

The uncertainty of particle position is commutation relations between position 
and momentum operators which are expressed in the Heisenberg uncertainty 
principle. From Equation (2) we have (Alimohammadi and Hassanabadi, 2017; 
Chabab et al., 2016), 

ˆ ˆX x=  (3) 

( )2ˆ ˆ ˆ1i ML iP p p= +  (4) 

where ˆ
iP  and ˆ

ip  are related momentum operators to high and low energies, 

respectively. The momentum operator p̂  is expressed by p i= −  . 

The time-independent Schrödinger equation with the presence of minimal 
length is given as 
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( )
2

2 21

2

ML i ip p
V E

m


  

+
+ =  (5) 

here, 
ML  is a very small quantity, therefore 

2 0ML   then Equation (5) becomes

  

4 22 2

2 2

ML V E
m m


  

 −
 + + =
 








 (6) 

The new wave function that has to be introduced to get rid of the 2  term in 
Equation (6) is given as (Chabab et al., 2016) 

( ) ( ) ( )2, , 1 2 Δ , ,MLr r      = + (7) 

Equation (7) is modified to eliminate quadratic Laplacian such that we get Equation 
(8) in reference (Chabab et al., 2016). By substituting Equation (7) into Equation 

(6), and due to 
2 0ML  , then 

2
2 22 2 0

2
ML MLV E

m


   


− +  −  =  (8) 

By multiplying Equation (8) with 
2

2m
− , we get 

( )

( )

2

2

1 4 ML

m
V E

m V E






−

 =
− −  (9) 

By using simple mathematical manipulation, Equation (9) becomes 

( )

2

2
1

Δ 0
1 4 4

1
1 4

ML ML

ML

Vm
E

E

m E m V

m E




 



 
−−  

 
− =

+  
−  + 

 (10) 

By setting the new parameters in Equation (10)                                                                

( )

2

; 
1 4

4
4 ;

1 4

1

ML

ML

ML

m
E

m E

m

m E

E



 








−

=
+

−
=

+

= −

                    (11) 

Then by using simple mathematical manipulation from Equations (10) and (11) we 
obtain 

( )

( )

4
1 0

1 4

V

V

 
 

 

 − 
 − + = 

+  

   (12) 

The Schrödinger Equation in the presence of minimal length expressed in 
equation (12) given as 
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( )

( )
2

2

2

2 2 2

41
1

1 4
0

1 1 1
sin

sin sin

V
r

r r Vr

r

 

 



    

  −   
− +  

  +   
= 

    
+ +      

   (13) 

By setting ( )
( )

( ) ( ), ,
r

R r
r    =  

 
then the polar part of Schrödinger 

Equation is given as, 
 

( )

( )

( )

( )
( )

2

2 2

1 1
sin

sin
1

1 1

sin

L L




   



  

 
 
   

− = +  
 +
   

  (14) 

With L is the angular quantum number, and the radial part of the Schrödinger 
Equation is given as 

( )

( )

( )
( )

( )

2

2

2

( 1)

4 ( )
1

1 4 ( )

d r

dr L L
r

V r r
r

V r




 


 

 
 

+ 
=

  − 
 − +  +   

  (15) 

Q-DEFORMED MODIFIED ECKART POTENTIAL 

The Eckart potential is an asymmetric function. The interesting results 
concerning the potential give inspiration not only to explore another similar potential 
but also to study the thermal reaction of Formaldehyde (Ikhdair and Falaye, 2014). 
This potential is exactly solvable or quasi exactly solvable and their bound state 
solutions have been reported (Suparmi et al., 2013). The general form of Eckart 
potential is given as 

( ) 12

2

1 1

(1 ) 1

r r

a a

r r

a a

O

e e
V V V

a
e

r

e

− −

− −

 
+ 

= −
 
 − − 

 (16) 

with Vo  and 1V  describe the depth of the potential well and are positives, 1V Vo , a 

is a positive parameter that controls the width of the potential well0
r

a
   . In this 

study, we apply a special case of Eckart potential in Equation (16) by 

setting, 01V = , 
1

a
 = , and applying spatial deformation to the potential such that 

we get q-deformed modified Eckart potential, with the deformation parameter q . 

( ) ( )

2 2 2

0 0

2 2
2 2

01

r

r r r

V e V
V

V e e qe



  

 

 

−

− −
= =

− −
 (17) 

 

Q-DEFORMED HYPERBOLIC POTENTIAL PROPERTIES 

The q-deformed potential is a special kind of f-deformed potential with only 
one deformed parameter q (Darareh and Harouni, 2010). The quantum deformation 
of hyperbolic potential was introduced by Arai (1991). It has been investigated by 
some authors, Eshghi (2012), Akpan et al (2012), Egrifes et al (1999), Dutra 
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(2005), Suparmi et al. (2013). Dutra has reinterpreted the idea of quantum 
deformation as a kind of parameter scaling symmetry of the model, so the q-
deformed potential is not a new class of potential. By a convenient translation of 
spatial variables, one can transform the deformed potentials into the form of non-
deformed potentials or vice-versa. In analogy to the translation of spatial variable 
for the hyperbolic function which is introduced by Dutra (2005), by setting the 
translation of spatial variable for hyperbolic function as 

 

ln q
r r


→ +   (18) 

then Equation (18) is applied into q deformed hyperbolic potential (Arai, 1991) we 
obtain 

ln ln

ln ln

sinh
2

sinh
2

cosh cosh

q q
r r

q

q qr r

q

e qe
r

e e qe e
q r

r q r

 
 

 





 

   
+ − +   

   
   

−−

−
=

−
= =

→

   (19)   

ASYMPTOTIC ITERATION METHOD (AIM) 

Asymptotic Iteration Method (AIM) is one method to obtain the exact solution 
of the second-order differential equation is written as (Falaye, 2012; Bayrak and 
Boztosun, 2012; Elviyanti et al., 2018) 

( ) ( ) ( ) ( ) ( )'' '0 0 0nn n
y x x y x s x y x− − =    (20) 

where ( )0 0,x = and ( )0s x  is the coefficient of the differential equation and n 

denotes the quantum number. Equation (20) is differentiated to x, we obtain 
Equation (21), 

( ) ( ) ( ) ( ) ( )''' '
1 1 0n n ny x x y x s x y x− − =  (21) 

where ( ) ' 2
1 0 0 0x s  = + +  and ( ) '

1 0 0 0s x s s = + . The second derivative of Equation 

(20) is 

( ) ( ) ( ) ( ) ( )'''' '
2 2 0n n ny x x y x s x y x− − =   (22) 

where ( ) '
2 1 1 0 1x s   = + + , ( ) '

2 1 0 1s x s s = + , and so on until the i-th derivative of 

Equation (20) is given as 

( ) ( ) ( ) ( ) ( )'
2 2 0 i

n i n i ny x x y x s x y x − −− − = (23) 

with 

( ) ( )'
1 1 0 1 1 1; 'i i i i i i ix s s x s    − − − − −= + + = +   (24) 

The eigenvalue of second-order differential equation which is expressed in 
Equation (26) that is solved using AIM is obtained from the quantization condition 
which is given by,  

( ) ( ) ( ) ( )1 1 0

, 1,2,3 . 

i i i i

i

x s x x s x

i

 − −− =

=  =     (25) 
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By rewriting Equation (20) as 

( )

( )

( )

1

2
''

2

1
2

1

1

N

N

N

N

tx c
y x

xbx
y x

Wx
y x

bx

+

+

+

  +
  −

  −  =  
 

−
 −



 


 (26) 

then we get the solution of Equation (26) in form of the hypergeometric term, given 
as, 

 ( )
( ) ( ) ( )

( )2
2 1

( 1   2   

, , ,

n n

n
n

N

C N
y x

F n s n bx



 +

 − +
 

=  
 +




−


 (27) 

2 3
 

2

c N

N


+ +
=

+  and  
( )
( )

2 1 2

2

c b t
s

N b

+ +
=

+ (28) 

'C is normalization constant.  

RÉNYI ENTROPY AND ITS APPLICATION TO BLACK HOLE 

1. Rényi entropy  

The Rényi entropy is the generalization of Shannon entropy 1d →  that 

measures the uncertainty of particle location in space. The Rényi entropy reduces 
to Shannon entropy. The Rényi was introduced by Rényi (1960) as a generalization 
of the Shannon entropy which depends on a parameter d. The Rényi entropy is 
defined as (Rényi, 1960; Yahya et al., 2015) 

( ) ( )
0

1
log 4

1

d

d RR S r dr
d

  


= =
−   (29) 

2. Schwarzschild black hole 
In the classical approach, the Schwarzschild black hole appears to be 

thermodynamically unstable in canonical treatment due to the frequent negativity of 
the heat capacity of the black hole. This was reported by Czinner and Iguchi (2016) 
as a conclusion from Hessian analysis. Recently, thermodynamics properties of 
Schwarzschild black hole that have been studied include the work of Biro and 
Czinner (2013), Czinner and Iguchi (2016). Here, the usual Rényi entropy (SR) is 
used in quantum computation to compute the mass-energy parameter, that is used 
to determine the temperature (TR), and heat capacity (CR) of the black hole in terms 
of the work of Czinner and Iguchi (2016) as follows 

 
1

ln 1R BHS S


= +  (30) 

and for the Schwarzschild solution, it results (Czinner and Iguchi, 2016) 

21
ln 1 4RS M


 = +   (31) 

21 1 4

8 2 8
R

M M
T

M M

 

 

+
= + =  (32) 

2

2

8

4 1
R

M
C

M




=

−
     (33) 

where BHS  is Bekenstein-Hawking entropy, with 1 d = −  and M  is the mass-

energy parameter of the black hole. 
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RESULTS AND DISCUSSION 

Equation (15) cannot be solved exactly unless we use the approximation of 

centrifugal term, 2
1

r
, which is given as (Naderi and Hassanabadi, 2016) 

( )

2

2 2

1

sinhr r




=  (34) 

The visualization of that approximation in Equation (34) is shown in Figure 1. 
 

 

 

Figure 1. The visualization of 
2

1
( )f r

r
=  and 

2

2
( )

sin ( )

r
f r

r
=  for 0.1 = , the dashed 

line (- - -) for 2
1

r
 and the circle line (o-o-o-o) for 

( )

2

2sinh r




. 

 

It is seen that the two lines overlap with each other, then the centrifugal term 2
1

r
 

is matched to be approximated by 
( )

2

2sinh r




. The exact solution of Equation (15) 

can be obtained by inserting Equations (34), (17) into Equation (15), so we get 
 

( )
( )

( )

2 2
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−
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 (35) 

 

By inserting equation (19) into Equation (35) and then it is simplified by simple 
mathematical manipulation we get 

( )2 2 2

2
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4( 1)
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L L

r r q r
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
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
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 (36) 
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By setting the new parameters in Equation (36) 

( ) ( )

2

0

0

2

( 1) ( 1); ';

4 4
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 (37) 

and by inserting Equation (36)-(37) into Equation (35), we get 
2 2 2

2 2 2

( 1) ( 1)
'

sinh cosh
E

r r r

      
 

 

  − +
− − = 

  
 (38) 

Equation (38) is solved using the Asymptotic Iteration Method (AIM) by setting new 
variables as 

( )2cosh r z =  (39) 

2 2
2 2

2 2

2 ( 1) ;

4 ( 1) 2 (2 1)
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 (40) 

By applying Equations (39)-(40) in Equation (38), we have 
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with 
2

2 'E
k


= . 

By setting the new wave function in equation (41) as 

( ) ( ) ( ) ( )1r z z z f z
 = = −  (42) 

with  

;
22







− ==  (43) 

then Equation (41) becomes 
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 (44) 

Equation (43) is reduced to the AIM-type differential equation that is similar to 
Equation (20) which is given as 
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By comparing Equations (20) and (44), we have 

( )

( )

( )

( )

2
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1
2 2 2 1
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z z
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 (46) 

By using Matlab programming and using Equations (23)-(25) and (45)-(46) we get 

( )

( )
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2
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2
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2
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2
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2 ;
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 (47) 

By generalizing Equation (47), we have the general formulation for spectrum 
energy as, 

( )
2

2

4

k
n = + +  (48) 

By inserting Equations (37) and (43) into Equation (48) we have
  

( )2

22

2
2

'E
k n







− −= = =  (49) 

From the combination of Equations (11) and (49) and by setting nE E= , we get the 

energy spectrum equation given as                          

( )
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m
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(50)

 

with 

( )2

1 1

2 2 1 4

1

;
ML ML n

L

m E 



 + =
+

= +

 (51) 

Equation (51) is the energy spectrum equation of the quantum system for the q-
deformed modified Eckart potential in the minimal length formalism. Table 1 shows 
the reduced mass of CO, NO, O2, and I2 molecules. The numerical calculation of the 
energy spectra of some diatomic molecules that are influenced by q-deformed 
modified Eckart potential, for various values of quantum number (n, L), potential 

width, and minimal length parameter ( , ML ), are shown in Figures. 

 
Table 1. The characteristic of spectroscopic and reduces mass for diatomic 

molecules in the ground state 

 

Parameter CO NO O2 I2 

m (amu) 6.860586000 7.468441000 7.997457504 63.45223502 
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Figure 2. Spectrum Energy of q-deformed modified Eckart potential (En) in eV for 
the various n and L quantum numbers, and  constant potential and 
minimal length parameter, γ=0.1 and αML=0.1 for (a) CO, (b) NO, (c) O2, 
and (d) I2 diatomic molecules. 

 
 

Figure 3. Spectrum Energy of q-deformed modified Eckart potential(En) in eV for 
the various n and L quantum numbers, and  constant potential and 
minimal length parameter, γ=0.05 and αML=0.01 for (a) CO, (b) NO, (c) 
O2, and (d) I2 diatomic molecules. 
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Figure 5. Spectrum Energy of q-deformed modified Eckart potential  (En) in eV for 

the various n and L quantum numbers, and  constant potential and 
minimal length parameter, γ=0.05 and αML=0.1 for (a) CO, (b) NO, (c) O2, 
and (d) I2 diatomic molecules. 

 
By comparing Equations (26) and (45) we get the parameters of the 

hypergeometric differential equation expressed in Equation (26) for q-deformed 
modified Eckart potential as follows  

( )
2

2

1
1; t ; 1;

4

3
c ; ;

4 4

1 1
2 ;

2 2

2 2

N b
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
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 (52) 

 
By using Equations (27-28) and (52) we obtain the wave function f(z) given as 

( ) ( )

2 1

1
1 1

2
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  (53) 

Equation (53) is inserted into Equation (42) with 
2


− = , 

2


=  then we obtain 
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Since ( )2cosh r z = , then we obtain the first three lowest un-normalized wave 

functions of the quantum system for q-deformed modified Eckart potential from 
Equation (54) as 

( )2 2cosh sinhoU rC r


  − −=              (55) 
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       (57) 

 
The graphs of the wave function for various n, L, γ, and αML are shown in Figures 2-
6 are plotted using energy eigenvalues that are listed in Table 2-5 and un-
normalized wave function equations expressed in Equations (55) – (57).  
 

 
Figure 2. The graphs of the un-normalized wave function as a function of radial 

position, ground state (black line), the first excited (blue line) and second 
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excited (red line) wave functions for 0.05 = , 0.1ML =  and 1L =  for (a) 

CO, (b) NO, (c) O2, and (d) I2 diatomic molecules. 

 
Figure 3.  The graphs of the un-normalized wave function as a function of radial 

position, ground state (black line), the first excited (blue line), and 
second excited (red line) wave functions for 0.05 = , 0.01ML =  and 

1L =  for (a) CO, (b) NO, (c) O2, and (d) I2 diatomic molecules. 
 

 
Figure 4.  The graphs of the un-normalized wave function as a function of radial 

position, ground state (black line), the first excited (blue line), and 
second excited (red line) wave functions for 0.1 = , 0.1ML =  and 1L =  

for (a) CO, (b) NO, (c) O2, and (d) I2 diatomic molecules. 



“Jurnal Pendidikan Fisika dan Keilmuan (JPFK)” ◼ 

 Analysis of Non-Relativistic Energy, Wave Function, and Black Hole’s … 
 

91 

 
Figure 5.  The graphs of the un-normalized wave function as a function of radial 

position, ground state (black line), the first excited (blue line), and 
second excited (red line) wave functions for 0.4 = , 0.01ML =  and 1L =  

for (a) CO, (b) NO, (c) O2, and (d) I2 diatomic molecules. 
 

 
Figure 6.  The graphs of the un-normalized wave function as a function of radial 

position, ground state (black line), the first excited (blue line), and 
second excited (red line) wave functions for 0.4 = , 0.01ML = , and 

0L = , for (a) CO, (b) NO, (c) O2, and (d) I2 diatomic molecules. 
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The Rényi entropy is determined by using Equations (29) and (54) as follows 
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Equation (58), (59a), and (59b) are inserted into Equation (60), then, by using 
simple algebraic manipulation from Equation (60) we have, 
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By using integrals proposed by Bajpai (Bajpai, 1993), from equation (61) we get  
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Equation (62) is the Rényi entropy of q-deformed modified Eckart Potential in the 
presence of minimal length. Equation (62) is rewritten as the square root of the 
quadratic absolute value of the Rényi entropy given as 
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with ( )
2

2 1( 1)

2 2
C O






  
 − + =     

−
.
 

By using Equation (63) the Rényi entropy is visualized using Matlab as shown in 
Figures 7-9 for various d, γ, αML, L, n, and mass of the molecule.

 

 
 
Figure 7. The graphs of the Rényi entropy for the various n and d for 0.05 = , 

0.01ML = , and 1L = , for (a) CO, (b) NO, (c) O2, and (d) I2 diatomic 

molecules. 
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Figure 8. The graphs of the Rényi entropy for the various  and  for 0.1 = , 

0.1ML = , and 1L = , for (a) CO, (b) NO, (c) O2, and (d) I2 diatomic 

molecules. 

 
 

Figure 9. The graphs of the Rényi entropy for the various n  and d  for 0.4 = , 

0.01ML = , and 1L = , for (a) CO, (b) NO, (c) O2, and (d) I2 diatomic 

molecules.. 
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By inserting Equation (62) into Equation (31), we obtain the mass-energy 
parameter of the Schwarzschild black hole given as 
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 (64) 

Equation (64) is the mass-energy parameter of Schwarzschild black hole equation 
of q-deformed modified Eckart potential in minimal length formalism. 
From Equation (64) we have 
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 (65) 

By using Equation (65) the mass-energy parameter of Schwarzschild black hole is 
visualized using Matlab as shown in Figures 10-12 for various , , , ,MLd L n  and 

mass of the molecule. 

 
 
Figure 10. The graphs of mass-energy parameter of the Schwarzchild black hole 

for the various n  and d  for 0.05 = , 0.01ML = , and 1L = , for (a) CO, (b) 

NO, (c) O2, and (d) I2 diatomic molecules. 
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Figure 11. The graphs of mass-energy parameter of the Schwarzchild black hole 

for the various n  and d  for 0.1 = , 0.1ML = , and 1L = , for (a) CO, (b) 

NO, (c) O2, and (d) I2 diatomic molecules.. 

 
 
Figure 12. The graphs of mass-energy parameter of the Schwarzchild black hole 

for the various n  and d  for 0.4 = , 0.01ML = , and 1L = , for (a) CO, (b) 

NO, (c) O2, and (d) I2 diatomic molecules. 
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By inserting Equation (64) in Equation (32), then we get the temperature of 
Schwarzschild black hole equation for q-deformed modified Eckart potential given 
as 
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Equation (66) is the temperature of Schwarzschild black hole equation of q-
deformed modified Eckart potential in minimal length formalism. 
Equation (66) can be rewritten as 
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    (67) 

 
By using equation (67) the temperature of the Schwarzschild black hole is 
visualized using Matlab as shown in Figures 13-15 for various , , , ,MLd L n   and 

mass of the molecule. 
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Figure 13.  The graphs of the temperature of Schwarzschild black hole for the 

various n  and d  for 0.05 = , 0.01ML = , and 1L = , for (a) CO, (b) NO, 

(c) O2, and (d) I2 diatomic molecules.. 
 

 
Figure 14.  The graphs of the temperature of Schwarzschild black hole for the 

various n  and d  for 0.1 = , 0.1ML = , and 1L = , for (a) CO, (b) NO, (c) O2, and (d) 

I2 diatomic molecules. 
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Figure 15. The graphs of the temperature of Schwarzschild black hole for the 

various n  and d  for 0.4 = , 0.01ML = , and 1L = , for (a) CO, (b) NO, 

(c) O2, and (d) I2 diatomic molecules.. 
 
By inserting Equation (64) into Equation (33), we get the heat capacity of 
Schwarzschild black hole equation for q-deformed modified Eckart potential is 
given as 
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Equation (68) is the heat capacity of Schwarzschild black hole equation of q-
deformed modified Eckart potential in minimal length formalism. 

Equation (68) can be rewritten as 
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 (69) 

 
By using Equation (69) the heat capacity of the Schwarzschild black hole is 

visualized using Matlab as shown in Figures 16-18 for various d, γ, αML, n, and 
mass of the molecule. 

 

 
 

Figure 16.  The graphs of the heat capacity of Schwarzschild black hole for 
the various n  and d  for 0.05 = , 0.01ML = , and 1L = , for (a) CO, (b) NO, (c) O2, 

and (d) I2 diatomic molecules. 
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Figure 17.  The graphs of the heat capacity of Schwarzschild black hole for the 

various  and  for 0.1 = , 0.1ML = , and 1L = , for (a) CO, (b) NO, (c) 

O2, and (d) I2 diatomic molecules. 
 

 
 

Figure 18. The graphs of the heat capacity of Schwarzschild black hole for the 
various  and  for 0.4 = , 0.01ML = , and 1L = , for (a) CO, (b) NO, (c) 

O2, and (d) I2 diatomic molecules. 
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The energy spectra equation which is expressed in equations (50-51) is a 
function of variables of radial and angular quantum number, potential width, 
minimal length, and molecules mass parameters, (n, L, γ, αML, and m). All of these 
parameters gave the same effect to the calculated energy spectra. The increase of 
the value of the radial quantum n at constant values of (L, γ, αML, and m) causes a 
decrease in the value of the energy spectra. The increase of the potential width γ at 
constant values of n, L, αML, and m causes the decrease in the value of the energy 
spectra, and so for L, αML, and m. 

Figures (2-6) show that the radial quantum number n, and the potential width 
γ, have the most effect on the form, and the width or wavelength of the wave 
functions. The increase of the radial quantum number n causes the increase of the 
number of wave functions. By comparing figures (2) with (4), and figures (3) with 
(5), we could see that the wavelength of all of the wave functions is influenced by 
the values of the potential width γ. The wavelength of the wave function decreases 
by the increase of the value of the potential width γ, shown in Figures (2-5). As 
shown in Figures 2 and 3, there is no effect of the value change of minimal length 
parameter αML on the wave function, while the change of angular quantum numbers 
causes the wave function to be flat for r ˂-10 and r˃10. It drops down as r 
approaches zero and has a symmetrical shape with r=0 as the axis of symmetry as 
shown in Figures 5 and 6. 

Figures 7-9 show that for higher values of the potential width γ, the increase 
of radial quantum number n causes the decrease of the values of Rényi Entropy. It 
is also shown that the values of Rényi entropy decrease by the increase of the 
potential width  . 

Figures 10-12, show that the value of the mass-energy parameter of 
Schwarzschild black hole decrease by the increase of the value of the potential 
width,   and the radial quantum number n  . However, the value of the mass-

energy parameter of the Schwarzschild black hole increase by the increase of the 
values of the entropy parameter d .

 

Figures 13-15 show that for higher values of potential width,  the increase of 

radial quantum number n  causes the decrease of the temperature, it is also shown 

that the temperature decreases by the increase of the potential width  . The mass 

of the molecule gives a small effect on temperature. 
From Figures 16-18 we could see that only the entropy parameter d  that has 

the most effect on the specific heat capacity compared to other parameters, 
potential width,    minimal length parameter ML , quantum numbers ,n L , and 

mass of the molecule m. 
 

CONCLUSION 

The solution of energy eigenvalue and wave function equation of Schrödinger 
equation for q-deformed modified Eckart potential was analyzed in the presence of 
minimal length formalism using AIM. The Rényi entropy was obtained by using the 
radial wave function that was expressed in hypergeometric series. Then from the 
Rényi entropy, the mass-energy parameter, temperature, and the specific heat 
capacity of the quantum system were determined.  

The result showed that the increase of the parameter of angular quantum 
numbers (n and L), potential width (γ) minimal length parameter (αML), and the 
reduced mass of the molecules (m) cause the decrease of the energy eigenvalues. 
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The radial quantum number (n), and the potential width (γ) have the most effect on 
the form and the wavelength of the wave functions. There was a very small effect of 

ML  and the mass of the molecules. 

For the Rényi entropy, the higher values of the potential width γ and the 
increase of radial quantum number n cause the decrease of its values. However, 
the values of the mass-energy parameter of Schwarzschild black hole increase by 
the increase of the values of entropy parameter d. 

The results also showed that for higher values of potential width γ and the 
increase of radial quantum number n causes the decrease of the temperature, it is 
also shown that the temperature decreases by the increase of the potential width γ. 
The mass of the molecule gives a small effect on temperature.

 

Only the entropy 
parameter d has the most effect on the specific heat capacity compared to other 
parameters.
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